当前位置:九力公文网>专题范文 > 公文范文 > 2023年度《圆与圆位置关系》教学反思3篇(2023年)

2023年度《圆与圆位置关系》教学反思3篇(2023年)

时间:2022-12-31 14:18:02 公文范文 来源:网友投稿

《圆与圆的位置关系》教学反思1  本节课的中心问题就是点与圆的位置关系,日常生活中圆是较常见的图形,但有关圆具体的性质还需进一步研究,本节是在理解圆的定义的基础上展开的,通过圆的定义我们都知道:下面是小编为大家整理的2023年度《圆与圆位置关系》教学反思3篇(2023年),供大家参考。

2023年度《圆与圆位置关系》教学反思3篇(2023年)

《圆与圆的位置关系》教学反思1

  本节课的中心问题就是点与圆的位置关系,日常生活中圆是较常见的图形,但有关圆具体的性质还需进一步研究,本节是在理解圆的定义的基础上展开的,通过圆的定义我们都知道:

  (1)圆内各点到圆心的距离都小于半径。

  (2)圆上各点到圆心的距离都等于半径。

  (3)圆外各点到圆心的距离都大于半径。

  由此可知,每一个圆都把*面上的点分成三部分,即圆内的点,圆上的点和圆外的点。对学生来说这样较易理解,并通过代数关系表述几何问题,使学生深化理解代数与几何之间的联系,为后面接触直线与圆,圆与圆的位置关系做下铺垫。

  本节课的得:

  (1) 从问题情境入手,建立模型,设下悬念,然后让学生探究两个问题,将探究的结论应用于实际问题,本节的一个关键点就是围绕着学生活动来展开,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐的关系。朴素的问题情境自然对学生产生了一种情感上的亲和力和感召力,增强了学生自主参与性,通过观察,操作,思考,解释,合作等教学活动过程,使学生体会到了创造的乐趣和成功的喜悦,还能感受到教学与自我生存的关系。

  (2) 通过直观的试验演示来创设教学情境,可以充分调动学生学习的兴趣和思维和积极性,在认知结构中,直观形象具有的鲜明性和强烈性,往往给抽象思维提供较多的感性认识经验。

  (3) 利用多媒体,深化了本节课,增强了学生对本节课的理解,同时加大课堂容量,与中考题型接轨。

  本节课的失:

  面对暂差生的问题,始终是教育教学的工作重点,在这两个班中,程度和基础都不一样,面对不同的班级应该采用不同的教学手段,来提高学生成绩。

  教学措施:

  在今后的教学中,要多反思,面对暂差生,应该多一份宽容,多一份耐心,换一种心态看他们 、去帮助他们,提高他们的学习兴趣。

《圆与圆的位置关系》教学反思2

  教材分析

  这节课是在学习点和圆以及直线和圆的基础上,进一步研究圆和圆有关的一些知识,学生亲自动手实践,自主探究圆和圆的位置关系,观察分析,猜想证明,完成从感性到理性的知识发生发展的认知过程,最后动用所学的知识解决问题,突现应用意识.

  学情分析

  处于这一阶段的学生,其思维已经具备了明显的逻辑性,但还不是不够完整,如何分析、如何入手等。在本堂课上通过情境指引,学生观察课件的动画制作,自己思考,动手操作等,引发学生的兴趣,引导他们一步达成了教学目标。

  教学目标

  知识目标:弄清圆和圆的五种位置关系,及两个圆的R+r、R-r与圆心距d的数量关系与两个圆的位置关系的相互转化。

  过程与方法:通过生活中的事例,探求圆与圆的五种位置关系,并提炼出相关的数学知识,从而渗透运动变化观点,渗透数形结合、分类讨论、类比、猜想、合作交流等数学思想和数学方法,培养学生一定的识图能力。

  情感、态度与价值观:经过操作、实验、发现、确认等数学活动,从探索两圆位置关系的过程中,体会数学活动充满着探索性和创造性,敢于发表自己的观点,并尊重和理解他人的见解,能从交流中获益,感受数学中的美感。

  重点:探索圆与圆之间的五种位置关系,及两圆五种位置关系与两圆圆心距d、R+r、R-r之间数量关系的相互转化

  难点:探索相交两圆的位置关系与圆心距d、R+r、R-r之间数量关系的过程。

  教学过程

《圆与圆的位置关系》教学反思3

  在本节课的授课中,我感觉以下几点比较满意:

  1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径R和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。

  2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。

  3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。

  4、 授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,过程与方法的目标落实比较好。

  但在本节课中还存在许多不足之处,主要在以下几方面:

  1、在学生分组活动中,个别学生不能参与进来,今后教学应该多加关注学困生。

  2、教学语言应该注意更加规范。

  3、在学生回答问题时,不应该只关注回答结果,也应该关注学生所表现出来的态度,用恰当的语言给予肯定和鼓励,使不同层次的学生获得不同的成功体验,从而增强自信心,激发学生的学习兴趣。

  4、本节课应该再加大练习量,进一步落实知识与技能的目标。

  本次课初备时,我校全体数学教师在一起研讨,杨玉芬老师对我的授课过程中,学生作品展示提出很好的建议:在没有实物投影的情况下,让学生通过粘贴可以解决这一问题。申卫青教师对我的授课程序进行调节指导。李秀捧老师对学生的探讨问题进行进一步设计

  初备方案发布于网上,又得到教研员王老师、风帆郝老师、列电张老师、我校杨老师、马坊杨老师等多位老师的指导点评,我又在此基础上对方案进一步加工。

  授课后,各位教师直述己见,让我认识到自己需要继续努力.

  通过这次活动,使我更注意到学生的活动和参与情况,给学生充分的时间,把主动权交给学生,自己只是课程的设计者,在授课时适时引导,使尽可能多的学生真正参与进来,可以采取小组之间竞争评比打分以提高学生的注意力、合作交流、积极发言等各方面的参与情况。当学生回答问题后,无论回答的结果如何,要进行不同程度的关注:对回答结果清晰、正确者给予鼓励;对回答不准确或不正确者,在其他学生纠正的同时也要给予积极参与、回答问题积极方面的鼓励,使不同层次的同学都体会成功的喜悦、参与的必要。

  在问题的设计上,一要根据学生的实际情况设计问题,问题难度由浅入深、层层递进,既要有梯度又要给学生留有思考的空间。二要考虑到题量的适度,加大练习量,更好地落实知识与技能目标。

  在授课时,更要注重数学语言的规范运用,加强学习,进一步充实自己的.教学经验。


《圆与圆的位置关系》教学反思3篇扩展阅读


《圆与圆的位置关系》教学反思3篇(扩展1)

——《圆和圆的位置关系》教学反思3篇

《圆和圆的位置关系》教学反思1

  本节课的教学设计本着这样的一个目的,在动眼、动手、动脑中创设轻松、自主的课堂气氛,使学生掌握获得知识的方法,体验学习的快乐。在本节课的授课中,我感觉以下几点比较满意:

  1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径R和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。

  2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。

  3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。

  4、授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,“过程与方法”的目标落实比较好。

  但在本节课中还存在许多不足之处,主要在以下几方面:

  1、在学生分组活动中,个别学生不能参与进来,今后教学应该多加关注学困生。

  2、教学语言应该注意更加规范。

  3、在学生回答问题时,不应该只关注回答结果,也应该关注学生所表现出来的态度,用恰当的语言给予肯定和鼓励,使不同层次的学生获得不同的成功体验,从而增强自信心,激发学生的学习兴趣。

  4、本节课应该再加大练习量,进一步落实“知识与技能”的目标。

  纵观整个课堂教学过程,动手与动脑的结合不仅让学生收获颇多,而且教者也回味无穷。在以后的教学中,我将继续努力,让我和学生在课堂中都能时刻享受到知识带来的快乐。

《圆和圆的位置关系》教学反思2

  《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:

  一、重视定义的形成和概括过程:

  “直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的.位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。

  二、重视定理的发现和总结过程:

  本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。

  引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?

  引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?

  引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?

  引导4:如何由数量关系并结合图形判定相应的位置关系呢?

  引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?

  引导6:以上三个判定反过来成立吗?

  通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。

  三、尊重学生的主体地位:

  教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?

  (2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?

  此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。

  四、重视规律的揭示和提炼过程:

  某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。

  五、拓宽学习的时间和空间:

  课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。

  学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。

  总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。

《圆和圆的位置关系》教学反思3

  这一节主要学习了圆和圆的位置关系,通过新的教学改革,学生分组学习的积极性提高了,学案的运用学生慢慢适应,并且起到了很好的作用。

  通过预习学案,学生提前预习,然后结合实际生活中的例子,包括两圆外离、内含、相交、外切、内切、同心圆等不同情况,让学生对于两圆的位置关系有直观感受,然后探究和发现图形的位置关系与圆的半径、圆心距的大小有关,并完成学案的部分填表和习题,从而加深对三种不同位置的理解。

  但是,对于我班的实际情况,基础差得同学很多,有几个学生甚至放弃了数学,针对这种情况,设计了一些适合他们的练习题,让他们找回学数学的信心,好些的同学做些难度大些的题着重让学生通过一定量的训练,应用所学的知识解决问题,从而加深理解课堂上所学的重难点。学生的学习积极性大大的提高了,并且大部分学生当堂达标,效果很好。

  以后应好好总结经验,继续加强这方面的训练,相信一定会有好的效果。


《圆与圆的位置关系》教学反思3篇(扩展2)

——《点与圆的位置关系》教学反思3篇

《点与圆的位置关系》教学反思1

  本节课的中心问题就是点与圆的位置关系,日常生活中圆是较常见的图形,但有关圆具体的性质还需进一步研究,本节是在理解圆的定义的基础上展开的,通过圆的定义我们都知道:

  (1)圆内各点到圆心的距离都小于半径。

  (2)圆上各点到圆心的距离都等于半径。

  (3)圆外各点到圆心的距离都大于半径。

  由此可知,每一个圆都把*面上的点分成三部分,即圆内的点,圆上的点和圆外的点。对学生来说这样较易理解,并通过代数关系表述几何问题,使学生深化理解代数与几何之间的联系,为后面接触直线与圆,圆与圆的位置关系做下铺垫。

  本节课的得:

  (1) 从问题情境入手,建立模型,设下悬念,然后让学生探究两个问题,将探究的结论应用于实际问题,本节的一个关键点就是围绕着学生活动来展开,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐的关系。朴素的问题情境自然对学生产生了一种情感上的亲和力和感召力,增强了学生自主参与性,通过观察,操作,思考,解释,合作等教学活动过程,使学生体会到了创造的乐趣和成功的喜悦,还能感受到教学与自我生存的关系。

  (2) 通过直观的试验演示来创设教学情境,可以充分调动学生学习的兴趣和思维和积极性,在认知结构中,直观形象具有的.鲜明性和强烈性,往往给抽象思维提供较多的感性认识经验。

  (3) 利用多媒体,深化了本节课,增强了学生对本节课的理解,同时加大课堂容量,与中考题型接轨。

  本节课的失:

  面对暂差生的问题,始终是教育教学的工作重点,在这两个班中,程度和基础都不一样,面对不同的班级应该采用不同的教学手段,来提高学生成绩。

  教学措施:

  在今后的教学中,要多反思,面对暂差生,应该多一份宽容,多一份耐心,换一种心态看他们 、去帮助他们,提高他们的学习兴趣。

《点与圆的位置关系》教学反思2

  《点与圆的位置关系》是人教版九年级上册第二十四章第二节,这一节分为两个部分(即点与圆的位置关系和外接圆、外心),本节课主要学习了点与圆的三种位置关系。在理解圆的定义的基础上展开了点与圆的位置关系教学,通过圆的定义得到了圆内点到圆心的距离都小于半径,圆上点到圆心的距离都等于半径,圆外点到圆心的距离都大于半径,每一个圆都把*面上的点分成三部分:圆内的点、圆上的点和圆外的点。学生理解透彻,掌握较好。

  反思教学方法:

  本节课我结合九年级学生的认知特点,从学生已有的生活经验和知识出发,让学生通过自己归纳,、总结,并且主动的研究,从而学会知识。学生先学,先练,老师后讲,后教,促使他们在自主探究的过程中,真正理解和掌握数学知识,数学思想和数学方法,同时获得广泛的数学经验,效果较为理想。

  反思目标完成情况:

  目标1:学生能够清楚的口述点和圆的位置关系以及相对应的点到圆心的距离和半径的大小关系。

  目标2:通过动手探究,知道了不在同一条直线上的三个点可以确定一个圆。但有十个同学因动手作图能力差,最后实在别人的帮助下完成的自学任务,还有三个同学竟然没有作图工具。

  目标3:掌握了三角形的外接圆和外心概念,都能准确的找见三角形的外心并作出三角形的外接圆。

  反思教学设计:

  每个环节缺少相对应的练习题是这节课最大的失败之处,因为课前考虑到学生的动手探究能力差,耗时,为了完成教学任务,因此没有设置相应的练习题。特别是在“探究1”环节,学生虽对点与圆的位置关系掌握较好,但在一般的习题中,多考查由“点到圆心的距离”推出“点和圆的位置关系”,反推得难度相对于顺推稍高,所以恐学生解决问题存有困难,且解题过程的书写存有问题,在课后辅导中要进行训练。

《点与圆的位置关系》教学反思3

  本节课的中心问题就是点与圆的位置关系,日常生活中圆是较常见的图形,但有关圆具体的性质还需进一步研究,本节是在理解圆的定义的基础上展开的,通过圆的定义我们都知道:

  (1)圆内各点到圆心的距离都小于半径。

  (2)圆上各点到圆心的距离都等于半径。

  (3)圆外各点到圆心的距离都大于半径。

  由此可知,每一个圆都把*面上的点分成三部分,即圆内的点,圆上的点和圆外的点。对学生来说这样较易理解,并通过代数关系表述几何问题,使学生深化理解代数与几何之间的联系,为后面接触直线与圆,圆与圆的位置关系做下铺垫。

  本节课的得:

  (1) 从问题情境入手,建立模型,设下悬念,然后让学生探究两个问题,将探究的结论应用于实际问题,本节的一个关键点就是围绕着学生活动来展开,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐的关系。朴素的问题情境自然对学生产生了一种情感上的亲和力和感召力,增强了学生自主参与性,通过观察,操作,思考,解释,合作等教学活动过程,使学生体会到了创造的乐趣和成功的喜悦,还能感受到教学与自我生存的关系。

  (2) 通过直观的试验演示来创设教学情境,可以充分调动学生学习的兴趣和思维和积极性,在认知结构中,直观形象具有的鲜明性和强烈性,往往给抽象思维提供较多的感性认识经验。

  (3) 利用多媒体,深化了本节课,增强了学生对本节课的理解,同时加大课堂容量,与中考题型接轨。

  本节课的失:

  面对暂差生的问题,始终是教育教学的工作重点,在这两个班中,程度和基础都不一样,面对不同的`班级应该采用不同的教学手段,来提高学生成绩。

  教学措施:

  在今后的教学中,要多反思,面对暂差生,应该多一份宽容,多一份耐心,换一种心态看他们 、去帮助他们,提高他们的学习兴趣。


《圆与圆的位置关系》教学反思3篇(扩展3)

——《直线与圆的位置关系》教学反思3篇

《直线与圆的位置关系》教学反思1

  一、重视定义的形成和概括过程:

  “直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。

  二、重视定理的发现和总结过程:

  本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数”的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。

  三、尊重学生的主体地位:

  教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?(2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。

  四、重视规律的揭示和提炼过程:

  在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系”有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。

  五、拓宽学习的时间和空间:

  课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。1、AB与圆相离2、AB与圆相交3、AB与圆相切,学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。

  总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。

《直线与圆的位置关系》教学反思2

  这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。

  在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

  1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

  2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

  同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

  1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

  2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

  3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。

  总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

《直线与圆的位置关系》教学反思3

  《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的*台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

  亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水*要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

  亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

  亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

  亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

  亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

  亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。


《圆与圆的位置关系》教学反思3篇(扩展4)

——《直线和圆的位置关系》教学反思10篇

《直线和圆的位置关系》教学反思1

  《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的*台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

  亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水*要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

  亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

  亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

  亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

  亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

  亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的.榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。

《直线和圆的位置关系》教学反思2

  这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。

  在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

  1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

  2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

  同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

  1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

  2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

  3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。

  总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的`数学教师。

《直线和圆的位置关系》教学反思3

  节课的教学,我认为成功之处有以下几点:

  1.由日落的三张照片(太阳与地*线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

  2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

  3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

  同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

  1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

  2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

《直线和圆的位置关系》教学反思4

  这节课,我由生活中的情景——日落引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生*移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

  1、由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。

  2、在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

  3、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

《直线和圆的位置关系》教学反思5

  《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的*台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

  亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水*要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

  亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

  亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

  亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

  亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

  亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的`问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。

《直线和圆的位置关系》教学反思6

  本节内容是直线与圆的位置关系的第二节课。需要一个课时。

  (1)在教学中,组织学生自主观察、猜想、

  证明

  并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时

  总结

  (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。

  今 后再教学本节课,应删去未能落实的教学设计,如繁杂的证明,多重视展示后进生的思维活动,有效地帮助他们形成良好的思维品质。另外,应加强对学生新建的知 识结构进行有效的跟踪、检测、调查与反馈,加强与学生交流,帮助他们扎实构建完整的知识体系,帮助他们养成观察、猜想、分析、探索、语言表达等思维习惯, 使学生在获得知识的同时,进一步培养相关的思维能力和素质.

  新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”, 让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适 度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学 生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课 仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核 心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给 学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的 思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关 注学生思维的状态与学习互动的状态。

《直线和圆的位置关系》教学反思7

  新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。

  在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日出引入,让学生发现地*线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后引入直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系。通过本节课的教学,我认为成功之处有以下几点:

  1、由日出的三张照片(太阳与地*线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

  2、在探索直线和圆位置关系所对应的位置关系时,我先引导学生回顾直线和直线的位置关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

  3、新课标下的数学强调人人学有价值的数学,人人学有用的数学,培养思维全面,逻辑缜密的人,培养学生解决实际问题的能力。所以增加了一道题目,知识源于课本但高于课本,重点是培养学生的全面性。让乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

  同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

  1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

  2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

  3、对“课堂训练”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。

  总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的高中数学教师。

《直线和圆的位置关系》教学反思8

  本节课教学我所面对的传授对象是聋哑学生,根据聋生的特点在学生观察教材123页三幅照片时,我立刻告诉学生你说的对,这就是直线和圆的三种关系:相交、相切和相离。我认为是数学课而不是语文课,数学课只注重学生的观察思维能力,不追求学生的语言表达能力和概括能力。

  还有因为手语的手势再多再细也不可能表达出所有的抽象的甚至连丰富的语言都不好表述的东西,因此在讲解数学时,我追求细致,不要想很简单,很明显,而一带而过。因此,教学时我多次强化学生对直线与圆的三种关系的理解,为学生探究点到直线的距离d和圆半径r的大小关系。

  然而数学教学时,该细的地方还是要细,这需要教师自己的把握,在学生轻而易举回答出来的问题时,有时要带领学生深入思考,并多问个为什么?比如在本课学生总结出:“圆的切线垂直于过切点的直径”时。养成学生深入思考的好习惯,不要想当然!

《直线和圆的位置关系》教学反思9

  《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:

  一、重视定义的形成和概括过程:

  “直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。

  二、重视定理的发现和总结过程:

  本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。

  引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?

  引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?

  引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?

  引导4:如何由数量关系并结合图形判定相应的位置关系呢?

  引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?

  引导6:以上三个判定反过来成立吗?

  通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。

  三、尊重学生的主体地位:

  教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?

  (2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?

  此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。

  四、重视规律的揭示和提炼过程:

  某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。

  五、拓宽学习的时间和空间:

  课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。

  学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。

  总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。

《直线和圆的位置关系》教学反思10

  本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。

  讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。

  本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。

  重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。

  教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。


《圆与圆的位置关系》教学反思3篇(扩展5)

——圆和圆的位置关系 教案3篇

圆和圆的位置关系 教案1


圆和圆的位置关系 教案毛成胜

广东省东莞市新星学校 毛成胜

材: 华师大版第九册23章2.4圆与圆的位置关系P60~62

教学目的要求:

知识目标:1、了解圆和圆五种位置的定义,

2、熟练掌握用数量关系来识别圆与圆的位置关系

能力目标:培养学生的观察、想象、分析、动手操作、概括的能力,“分类讨论”的数学思想,

情感目标:利用多种教学手段来激发学生学习的兴趣,通过鼓励和肯定学生,培养他们敢于

想象,勇于探索的学习精神。

教学重点:用数量关系来识别圆与圆的位置关系

教学难点:用数量关系来识别圆与圆的位置关系

教学用具:多媒体

教学方法:问题、引导、直观演示、总结

学法指导:猜想、类比、观察、归纳、实验探究、合作交流

教学过程:



圆和圆的位置关系 教案2

  目标:

  知识目标:经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

  重点和难点

  重点:圆与圆之间的几种位置关系

  难点:两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

  教学过程设计

  一、从学生原有的认知结构提出问题

  1)复习点与圆的位置关系;2)复习直线与圆的位置关系。

  二、师生共同研究形成概念

  1.书本引例

  ☆ 想一想 P 125 *移两个圆

  利用*移实验直观地探索圆和圆的位置关系。

  2.圆与圆的位置关系

  每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出

  ☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;

  若两圆有一个交点,则这两个圆的位置关系是 相切 ;

  若两圆有两个交点,则这两个圆的位置关系是 相交 ;

  ☆ 想一想 书本P 126 想一想

  通过实际例子让学生理解圆与圆的位置关系。

  3.圆与圆相切的性质

  ☆ 想一想 书本P 127 想一想

  旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。

  如果两圆相切,那么两圆的连心线经过切点

  4.讲解例题

  例1.已知⊙ 、⊙ 相交于点A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度数;2)⊙ 的半径 和⊙ 的半径 。

  5.讲解例题

  例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小。

  三、随堂练习

  1.书本 P 128 随堂练习

  2.《练习册》 P 59

  四、小结

  圆与圆的位置关系;圆心距与两圆半径和两圆的关系。

  五、作业

  书本 P 130 习题3.9 1

  六、教学后记

圆和圆的位置关系 教案3

  教学目标

  (一)教学知识点

  1.了解圆与圆之间的几种位置关系.

  2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

  (二) 能力训练要求

  1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.

  2.通过*移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.

  (三)情感与价值观要求

  1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.

  教学重点

  探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

  教学难点

  探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.

  教学方法

  教师讲解与学生合作交流探索法

  教具准备

  投 影片三张

  第一张:(记作3. 6A)

  第二张:(记作3.6B)

  第三张:(记作3.6C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.

  Ⅱ.新课讲解

  一、想一想

  [师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?

  [生]如自行车的两个车轮间的位置关 系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.

  [师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.

  二、探索圆和圆的位置关系

  在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,*移⊙O2,⊙O1与⊙O2有几种位置关系?

  [师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.

  [生]我总结出共有五种位置关系,如下图:

  [师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外 部来考虑.

  [生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;

  (2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;

  (3)相交:两个圆有两个公共点,一 个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;

  (4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;

  (5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.

  [师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?

  [生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.

  [师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.

  经过大家的讨论我们可知:

  投影片(24.3A)

  (1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.

  (2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离 ,相切

  三、例题讲解

  投影片(24.3B)

  两个同样大小的肥皂 泡黏在一起,其剖面如图所示(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直 线,TP、NP分别为两圆的切线,求TPN的大小.

  分析:因为两个圆大小相同,所以 半径OP=O'P=OO',又TP、NP分别为两圆的切 线,所以PTOP,PNO'P,即OPT=O'PN=90,所以TPN等于36 0减去OPT+O'PN+OPO'即可.

  解 :∵OP=OO'=PO',

  △PO'O是一个等边三角形.

  OPO'=60.

  又∵TP与NP分别为两圆的切线,

  TPO =NPO'=90.

  TPN=360-290-60=120.

  四、想一想

  如图(1),⊙O1与⊙O2外切,这个图是 轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2 )〕

  [师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一 个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三 步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.

  证明:假设切点T不在O1O2上.

  因为圆是轴对称图形,所以T关于O1O2的对称点T'也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.

  则T在O1O2上.

  由此可知图(1)是轴对称图形,对 称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.

  在图(2)中应有同样的结论.

  通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心 线.

  五、议一议

  投影片(24.3C)

  设两圆的半径分别为R和r.

  (1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?

  (2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?

  [师]如图,请大家互相交流.

  [生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线 O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.

  在图(2)中,⊙O1与⊙O2相内切,切点是 B.因为切点B在连心线O1O2上,所以 O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.

  [师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r.

  当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内 切,即两圆相内切 d=R-r.

  Ⅲ.课堂练习

  随堂练习

  Ⅳ.课时小结

  本节课学习了如下内容:

  1.探索圆和圆的五种位置关系;

  2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;

  3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.

  Ⅴ.课后作业 习题24.3

  Ⅵ.活动与探究

  已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.

  分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.

  解:连接O2O3、OO3,

  O2OO3=90,OO3=2R-r,

  O2O3=R+r,OO2=R.

  (R+r)2=(2R-r)2+R2.

  r= R.

  板书设计

  24.3 圆和圆的位置关系

  一、1.想一想

  2.探索圆和圆的位置关系

  3.例题讲解

  4.想一想

  5.议一议

  二、课堂练习

  三、课时小结

  四、课后作业


《圆与圆的位置关系》教学反思3篇(扩展6)

——《圆的周长》教学反思

《圆的周长》教学反思

  身为一名人民老师,教学是重要的任务之一,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写才好呢?以下是小编为大家收集的《圆的周长》教学反思,仅供参考,大家一起来看看吧。

《圆的周长》教学反思1

  今天在六一班上的《圆的周长》一课,感觉特别好。可能是教师节的气氛感染着学生,学生的动手速度特别快,积极性也很高。给大家分享一下课堂的流程。

  从人人都坐过的旋转木马导入,回忆儿时的快乐。接着问学生,旋转木马旋转一周的距离大约有多少米?学生一时回答不上来,就引导学生,旋转木马旋转一周形成的图形是?学生异口同声:圆。经过一周的距离也就是圆的?周长!板书课题。接着让学生拿出准备的圆片,互相指出圆的周长,有原来学习周长的基础,学生都能完成这项任务。它的周长究竟是多少呢?你有办法知道吗?接着有一个学生说出了绕绳法测圆的周长,叙述非常清晰,我借机表扬他:对于我们不能用尺子直接测量的曲线,你能借助柔软的绳子把曲线变成线段,这种化曲为直的方法多么可贵呀!还有别的方法吗?没有人回答,适时课件出示滚动法。接着让学生拿出准备的三个圆片,标上1,2,3。分别用滚动法和绕绳法测量圆1和圆2的周长,并记录在圆片上。(接下来的课只需让学生再次测量直径,从而提高效率)然后问孩子们:手中的圆片很容易测出周长,摩天轮,地球的赤道会用这两种方法测量吗?学生笑了。看来我们有必要探索一种新的方法,引出圆周率的教学。

《圆的周长》教学反思2

  《圆的周长》是北师大版数学十一册教科书第一单元第四课的内容。本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。我分成四个层次来进行教学:

  (1)在具体情境中,研究不同的情况可以用不同的方法来测量一些实物中的圆的周长,如用“绕、滚”的方法来测量。但对于象黑板上画的圆,当学生发现测这个圆的周长不能用“绕、滚”的方法来测量,必须研究一种求圆周长的方法。

  (2)在推导计算圆周长的公式时,先启发学生通过对不同大小的圆进行观察,思考它们的周长与它的什么有关系?

  (3)分小组进行,研究周长与直径有什么关系,将数据填到书上,进行观察思考,得出“圆的周长总是直径的三倍多一点的结论”,理解圆周率π的意义。

  (4)推导出圆周长的计算公式,并进行实际运用,解决生活中简单的数学问题。

  通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

  教学反思:

  1、数学与实际生活相联系

  本课的素材来源于生活,从学生熟知的身边圆形物体入手,让学生指出看到的圆形并摸一摸圆的周长指的是哪里。较好的体现了新课改的理念:数学来源于生活又应用于生活。

  2、让学生大胆实践,重视了学生的测量方法的培养。

  听不如看,看不如做。新课标提出要让学生动手做数学也是这个道理。于是我让学生亲自动手实践,想出根据不同的实际情况,选择测量圆的周长的办法,在圆的周长测量过程中,教师引导学生采用多种不同的方法,培养学生测量技能和思维的灵活性。

  3、合作交流,培养学生的团队意识与协调能力。

  在测量圆的周长与直径的长度及计算不同的圆的周长与直径的比值都有什么特点时,学生产生了需要合作的需要,在合作探索的过程中,学生主动参与,体验了发现数学的乐趣,同时也培养了学生的探索实践及合作能力。

《圆的周长》教学反思3

  《国家数学课程标准》明确指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式,数学学习活动应当是一个生动活泼、主动探索和富有个性的过程。”也就是说,学生学远的周长习数学并非单纯的依靠模仿和记忆,数学学习过程的实质上学生主体富有思考性的探索过程。所以,数学知识的探索轨迹,作为学生是否主动参与的标志,展现于课堂教学的全过程。

  本节课探究的课题“圆的周长”,借助学生已有的学习经验从“圆周长好处”的理解,立足于学生的亲身体验和自由表达;“圆周长公式”的建构,则是借助于学生主体的测量、计算、自学、推导、论证等充分的实践活动而展开的。能够说,每个知识点的发现,都是学生自主探索的成果,而不是学生被动理解的结论。探索,作为学生学习数学的重要方式,在本节课的教学中到达了最大化。

  课堂上,生动搞笑的探索资料,能够给予学生愉悦的人文体验;开放宽松的课堂环境,能够给予学生充分的人文自由;恰到好处的鼓舞激励,能够给予学生强烈的人文尊严;各抒己见的思想交锋,能够培养学生民主的人文作风;标准严密的知识表达,能够培养学生严谨的人文精神;课堂生活的亲生经历,能够培养学生初步的人文道德。“你还想明白哪些关于圆的知识呢?”“究竟什么是圆的周长呢?谁能试着用自己的话说一说?”“请你大胆猜想,圆的周长与什么有关呢?”“究竟圆周长与直径存在着怎样的关系呢?下面,我们就来研究这个问题。”“要求圆周长,只要明白什么就能够了?请举例证明你的想法。”都是探索过程中人文交融的真实体现。

  对于小学数学教学而言,知识的探索是一条明线,它在课堂中的存在形式是“贯穿”;人文的交融是一条暗线,它在课堂中的存在形式是“渗透”;笔者认为,只有两者有机整合,让课堂成为“自主探究”与“人文交融”的*台,才能真正体现课堂教学“关注学生现实,着眼学生未来”的宗旨

《圆的周长》教学反思4

  一、在新旧知识的联结处设问。

  教学知识往往是在一个或几个旧知识的基础上推出新知识来的。学生在学习过程中,当原有知识经验和新接受的信息不相适应时,会产生心理上的不*衡,会产生一种力求统一矛盾,解决问题的强烈欲望,所以在新旧知识的联结处设问能引起学生认知冲突,激起他们探究知识的欲望。

  在这节课上,当学生说,圆形的周长可以用尺子测量出来后,我先进行了演示,后马上抛出问题:我们有的小区里有圆形的游泳池,我要知道它的周长,我怎么去滚呢?并用一根拴有小球的绳子不停的甩动,形成一个虚圆,继续问:这是一个圆吗?要知道它的周长,我怎么滚怎么包呢?如此一来,学生带着寻求新知识的强烈欲望,进入新的学习情境中。

  二、在教学内容的关键处设问。

  任何一节教学内容,总有一个比较重要的数学概念或知识,如何指导学生去理解、掌握这些概念和知识的方法,也是十分重要的。我认为,*时所说的教学关键指的就是这一点。为了使学生掌握解决问题的关键,就要在教学内容的关键处设问。我在这节课上也体现出了这一点。在师生共同得出应该可以通过计算来解决圆形的周长后,我还进行了提问:你们估计圆形的周长跟什么有关?学生回答出直径后又问:那么圆形的周长与直径到底是什么关系呢?这一简简单单的一句提问,马上把学生的注意力集中过来,积极投入到实验当中去,并摸索出本节课的教学重点。

  三、在探索规律中设问。

  学生是学习的主体,由于年龄特点和认知水*的局限,他们在探究知识时是离不开老师引导的。我在新授内容的探索规律部分巧设疑问,点拨学生思路,启发他们更快地发现规律,完整地概括出科学的结论。

  为了确切地把握好每一节课的教学要求,为了使每一节课的教学更具有针对性,为了使学生思维都具有明确的目标,在今后的教学过程中,我应结合教学实际,恰到好处地设问,留给学生更多思考的空间,促进他们积极动脑,尽量使每节课都能够取得较好的教学效果。

《圆的周长》教学反思5

  《圆的周长》是六年级上册第一单元圆的内容。本单元《圆》是在第一学段直观认识圆,学习了长方形、正方形等*面图形及其周长、面积的计算的基础上,进一步学习有关圆的知识。圆既是在其他*面图形基础上的拓展,又处处体现着“圆”的特殊性。本单元对圆的探索,将是从直线图形到曲线图形的学习,将是学生初步了解研究曲线图形的基本方法的开始。因此,在本课的教学时,我主要引导学生通过动手操作实践探索研究曲线图形的方法。

  在引出圆的周长时,我要求学生借助手中的圆片,感受圆的周长,揭示圆周长的概念,进而引导学生探索如何测量圆的周长。而学生主要提出两种方法:滚动法和绕绳法,在讲解这两种方法时,引导学生认识到在探索圆的周长时,其实质都是将曲线转化成直线,感受此“化曲为直”的思想。接下来让学生通过类比正方形周长与边长的倍数关系猜想圆的周长与直径的关系。

  反思自己这一堂课的教学,我觉得比较可取的一点是让学生事先做好教学准备(准备了三个大小不同的圆片与绳子),课堂上让学生经历动手操作实践,从而获得知识的过程。但不足的是,让学生经历动手操作实践的时间比较短,对于较好的学生给以的时间足够,但对于中等生与学困生的给以时间却比较仓促。另外由于部分同学课前预习过教材,导致在探索部分问题时,学生不假思索就将答案喊出,而对于出现这种问题时,我缺乏经验,只采用冷处理说出答案的同学的方法,又继续将课堂进行下去。

《圆的周长》教学反思6

  本节课内容是在学生学习了正方形和长方形的基础上,在学习了圆的初步认识,知道圆心、半径、直径及圆的特性的基础上,进而学习圆的周长的。

  本课的重点是圆的周长的计算方法,难点是圆的周长的计算公式推导过程,主要是圆周率的理解及其推导。

  本节课学生主要采取自主探究,合作学习的学习方法,在学生掌握基本知识的同时,促进他们的学习方法的养成,培养他们的数学素养。其主要为合作学习,让学生学会分析,学会分工,学会分享。

  本节课我尽量采取情境教学,为学生创设一个乐学、易学、好学的课堂氛围;始终以学生为主体,鼓励他们积极的参与其中,自主学习,作为课堂上真正的学习主人;尽量授之于学习方法,让他们在合作的学习过程中感受到学习的快乐;不断的渗透数学思想,让学生变的会写、会做、会思考;正确的评价学生的学习态度及学习表现,调动学生于一个较高的学习状态中;采用小结、应用等基本教学环节,使学生掌握圆的周长的相关知识,以达到预期的课堂目标;进行*古代数学文化教育,培养学生的爱国热情及学习热情。

  本节课灵活性较强,希望看到学生的不同闪光点,看到他们的创新火花,看到他们快乐学习的笑脸。

  本着这样的教学设计与意图来完成小学高年级《圆的周长》这节课的教学工作,课后,感觉——一个字“差”,三个字“真的差”。

  一差:不能很好的适应新的教学环境。第一次带着话筒上课,我与它的配合太不默契了。低头声大,抬头声小,占据了我的一些大脑空间;我的教学设计与多媒体联系密切,因为键盘鼠标放置在一个角落,每次使用得提前占用一些时间,教学环节不流畅;学生与听课教师的层面不能一眼看到,使我不能及时观察到教师的表情,不能及时的调整自己的教学策略。

  二差:不能很好的与学生进行配合。陌生的学生,尽管短暂的了解,但是还是知之甚少。就拿这个来说吧:看大屏幕,自读小故事。学生却大声齐读开来,一个可以由学生自己感悟的知识,自读就可以了,听到学生的声音,我又不好意思打断他们,只能任由他们读下去。

  三差:不能很好的设计最细化的问题。问题较为粗略,学生答题有理解上的困难。回答很是不积极。这是我这节课的失败的关键所在。

  四差:学生的活动交流自主合作学习没有很好的体现。尽管我用了大部分时间,让学生去合作交流,最终得到本课的重点知识,但经过学生的活动,为了节省时间,我代替他们把活动的结果利用计算机这一媒体展示出来,我想,这是错的。不过,孩子们真的,没有发现,我的设计只能落空。最后不得不自已代替学生得出新学的知识。

  五差:自己多年的山村教学,已经把自己的语言,神态包裹的严严实实。没有更多的流畅的教学语言,没有激励的话语。自己的言行,会犯下些许的小错误。

  不想再多说什么,只想默默的思考。为什么自己的精心设计却没有在学生身上闪现?还是因为自己的设计根本不够精心?

《圆的周长》教学反思7

  《新课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。……数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”数学学习方式不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。

  ?圆的周长这节课的重点是理解圆的周长的意义及计算公式的推导过程,难点是理解掌握圆的周长公式及圆周率。

  我首先用课件出示了情境图,引入什么是圆的周长,让学生理解圆的周长的含义,体会圆的周长在生活中随处可见。接着提出问题:怎样才能知道圆的周长是多少呢?介绍“滚动法”和“绕线法”,但是学生马上体会到这两种方法都有局限性,因而自然地想到了计算的方法,从而提出疑问:圆的周长和什么有关,有什么关系。师介绍“圆的工具”,学生利用工具,自由探索,发现,得出圆的周长总是直径的3倍多一些,这个固定的数就是圆周率,并得出圆的周长计算公式。最后利用这个公式计算不同圆的周长。

  整个上课的过程中,学生学习的氛围较好,能积极思考问题。过程中,我充分利用网络教学资源,如,课件、电子白板、“圆的工具“等,激发学生学习的积极性,主动性。

  此外,我还给学生合作交流讨论的机会,在自主探索,亲身实践,合作交流的氛围中,解决困惑,更清楚地明确自己的想法,并有机会分享自己和他人的想法,使数学学习变成学生的主动性、能动性、独立性不断生成、弘扬、发展和提升的过程。

  整节课下来,学生学习效果较好,我想,这得益于“1对1”的教学模式,得益于很多资源、数学软件的应用,得益于学生的动手操作,也得益于提出的问题引起了学生的思考。

  这节课后,我深切的感受到以学生为主体的本质就是激发和唤醒学生学习的兴趣与思考。

《圆的周长》教学反思8

  1、以持续发展为着眼点,重组教材,引导探究。

  按传统数学教材,周长的概念描述为“围成一个图形的所有边长的总和叫做它的周长”。但我从数学新课程“空间与图形”的整体目标出发,从学生持续、和谐的发展出发,加强了“周长”与日常生活联系,让学生用自己的语言来描述对“周长”的理解,并一一进行充分肯定,这样教学,充分反映了我对新课程理念的正确认识。教学中,我尊重学生,发扬教学民主,以学生为探究主体,尽可能让学生充分暴露自己的思维过程,引导学生自主评价,自我感悟,老师成了学生学习的组织者、引导者、合作者和共同参与者。在策略的比较中,促进了学生认知潜力和图形周长推理潜力的发展,体现了“跳出数学教数学”的教学思想,充分地让学生经历了“数学化”和“再创造”的学习探究过程,为学生个性的发展带给了充分的时间和空间。

  2、以解决实际问题为准则,强调算法的多样化

  计算长方形、正方形的周长是计算图形周长中的一种特例。它是经过人们的不断总结而获得的。它的特点是计算简便、迅速。但对初次接触的小学生来说,是把重点放在周长公式的结果上,还是注重引导学生在测量具体图形中探索周长的过程,则是两种不同教育观的反映。在教学过程中,我并没有采用传统的“公式─例题─习题”的教学结构模式,而是采用新课程努力倡导的“问题情景─猜想─建立模型─验证与解释─应用与拓展”新型教学模式进行的。

  3、采用多种有效策略,调控探究进程,做到“自由而不散乱”

  新课程强调“算法的多样化”,就必然要引导学生。但放手让学生进行讨论时,又可能出现吵吵闹闹、课堂气氛嘈杂甚至失控的现象。因此,应对新课程的教学,如何让学生充分讨论,又保证学习进程的顺利进行呢?对于这些状况,我认为首先能够有一颗“*常心”,同时有一些“容忍”,即在讨论与交流的过程中,有一些吵闹是难免的,但有两点原则务必把握好:一是吵闹的东西务必是讨论话题相关的,二是吵闹要不影响别人和教学进程。违反了这两个原则,教师就不能再坐视不管了。

  但这节课中与探索新知中似乎有重复的地方,而且仅仅就这几个生活中的例子让学生说对周长的理解效果不必须好,这节课不能仅限于书上或教师给出图形和实物,完全能够联系学生的生活实际,摸、画、量、算身边熟悉的物体或图形,透过超多例子感知各种物体的周长。还有,在推导长方形、正方形的周长公式中,我急于归纳公式,而忽略了过程。在今后的教学中,既要强调数学思想方法的渗透,但又不就应追求任何强制的统一。在类似的“计算周长”教学中,学生会有各种不同的算法,对他们的不同算法,教师不要急于归纳到公式中去,能够让他们说说算的.道理。在多次的测量和计算的过程中,学生自己逐步会掌握用周长公式计算的方法。而是让学生透过独立思考、探究与计算的过程,自己会去体会他喜欢或者能够理解的算法,真正体现了“算法的多样化”和“让不同的人学不同的数学”的新课程理念。当然,对一些不善于用周长公式计算的学生,也不必强求统一,随着计算周长经验的积累,他们慢慢也能悟出周长公式的好处的。

《圆的周长》教学反思9

  本周,我们上了一堂关于圆周长的课。上课前,我们的备课小组预习了一个圆的周长。目的是让学生体验测量圆的直径和周长的过程,并通过计算找到周长和直径之间的关系。而不是直接给学生周长,然后设置计算公式。

  1.教人钓鱼比教人钓鱼好。

  学生有能力自己学习材料,并尝试让孩子们经历知识形成的过程。这种研究方法不仅对研究圆的周长是有效的,而且对学习其他知识也是有效的。这门课不仅传授知识,而且传授学习方法。

  2.层层深入,突破困难。

  本课有两个难点:如何测量圆的周长?发现圆的周长总是大于其直径的三倍。在布置作业之前,我了解了学生的情况。每个学生都有自己的方法,其他学生则给出了提示。首先,让学生发现尺子不能直接测量圆的周长。使学生能想到用测绳、滚压等方法将曲线变直。这让学生们觉得他们必须探索一条普遍规律。

  3.充分发挥合作意识

  现代人必备的素质之一是合作精神,因此本课程还允许学生多次合作发现和解决问题。同时,我会及时给予帮助和指导。不仅让学生学会合作,也让学生提高学习效率

《圆的周长》教学反思10

  这是学生第一次接触"周长"这个词语,所以只有让学生通过观察、操作、亲身体验等活动,让学生在具体情境中理解周长的含义。在课堂上,首先,我通过创设生动、有趣的情境导入新课,激发学生的学习兴趣,并让学生初步感知"一周"和"周长"这两个词语;再让学生用彩笔描出自己喜欢的树叶及课本上习题上的图形,进一步直观地感知周长,从而使学生得到图形的周长就是一周的长度;接着让学生找身边的例子来说一说什么是它的周长,并且用手摸一摸它的周长,拓展学生对周长的感性认识,初步认识周长的意义;最后让学生通过量一量、算一算,让学生运用周长的知识,计算规则图形的周长及知识的拓展延伸。再让学生走出教室分组测量实际图形,计算图形的周长。

  周长的概念描述为“围成一个图形的所有边长的总和叫做它的周长”。但我从数学新课程“空间与图形”的整体目标出发,从学生持续、和谐的发展出发,加强了“周长”与日常生活联系,让学生用自己的语言来描述对“周长”的理解,并一一进行充分肯定,这样教学,充分反映了我对新课程理念的正确认识。教学中,我尊重学生,发扬教学民主,以学生为探究主体,尽可能让学生充分暴露自己的思维过程,引导学生自主评价,自我感悟,老师成了学生学习的组织者、引导者、合作者和共同参与者。在策略的比较中,促进了学生认知能力和图形周长推理能力的发展,体现了“跳出数学教数学”的教学思想,充分地让学生经历了“数学化”和“再创造”的学习探究过程,为学生个性的发展提供了充分的时间和空间。

  计算长方形、正方形的周长是计算图形周长中的一种特例。它是经过人们的不断总结而获得的。它的特点是计算简便、迅速。但对初次接触的小学生来说,是把重点放在周长公式的结果上,还是注重引导学生在测量具体图形中探索周长的过程,则是两种不同教育观的反映。在教学过程中,我并没有采用传统的“公式—例题—习题”的教学结构模式,而是采用新课程努力倡导的“问题情景—猜想—建立模型—验证与解释—应用与拓展”新型教学模式进行的。

  这节课不能仅限于书上或教师给出图形和实物,完全可以联系学生的生活实际,摸、画、量、算身边熟悉的物体或图形,通过大量例子感知各种物体的周长。还有,在推导长方形、正方形的周长公式中,我急于归纳公式,而忽略了过程。在今后的教学中,既要强调数学思想方法的渗透,但又不应该追求任何强制的统一。在类似的“计算周长”教学中,学生会有各种不同的算法,对他们的不同算法,教师不要急于归纳到公式中去,可以让他们说说算的道理。在多次的测量和计算的过程中,学生自己逐步会掌握用周长公式计算的方法。而是让学生通过独立思考、探究与计算的过程,自己会去体会他喜欢或者能够理解的算法,真正体现了“算法的多样化”和“让不同的人学不同的数学”的新课程理念。当然,对一些不善于用周长公式计算的学生,也不必强求统一,随着计算周长经验的积累,他们慢慢也能悟出周长公式的意义的。

《圆的周长》教学反思11

  问题是数学的心脏。本节课我运用问题解决思想,以问题导学,引导学生不断寻求策略,不断解决问题,让学生创造性地学习。怎样测量圆的周长,有几种方法?我打破了教材有什么做什么的传统做法,放手让学生探索创造,学生带着老师提出的问题一边思考,一边动手,把学习的主动权交给学生。这样,学生有充实的思考时间,有自由的活动空间,有自我表现的机会,更有一份创造的信心,通过动手操作大胆实践探索出“绕”“滚”“截”三种方法测量圆的周长,并归纳出它们的共同点:“用化曲为直的测量方法”,然后放手让学生在探索和观察中发现规律,得出结论,使学生自学寻求解决问题的策略,促进了圆的周长的教学。

  具体反思如下:

  1、联系学生生活实际,有利于激发学生学习的兴趣。

  华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。

  2、让学生带着问题去学习,有利于学生主动探索知识

  我国著名教育家顾明远说过“不会提问的学生不是好学生,学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。

  3、提高应用意识,努力体现课堂教学的开放性。

  生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈,也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。

《圆的周长》教学反思12

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“π”是如何来的,都是值得学生研究的问题。因此,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料所以学生对“π”的含义就理解得特别透彻,也学得有兴趣。

  1.授人以鱼,不如授人以渔。

  圆的周长是小学阶段最后掌握的有关周长的知识,此时学生已有长、正方形周长作基础,学生已有能力自己去研究这部分知识。所以在引入部分,我设计了正方形与圆形的动物赛跑路线,既能激发学生兴趣,又为圆周长的学习打下伏笔。通过比赛是否公*引出周长概念。问:正方形周长与谁有关?有什么关系?为学生研究圆周长指明方向。这种研究方法对研究圆的周长有效,对发规其他知识也有效,这节课不单是传授知识,更重要的是传授学习方法。

  2、层层深入,突破难点

  本节课有两个难点:如何测量出圆的周长?发现圆的周长总是它直径的3倍多一些。我采用了逐一突破的方法,层层深入。首先让学生发现尺不能直接测量出圆的周长。从而使学生想出用测绳、用滚动等方法化曲为直。这时候教师再让学生测量摩天轮上的圆、运动的圆,学生面前又出现新的问题,这使学生感到必须探索一个带有普遍性的规律。这时我让学生分组讨论,圆的周长与谁有关。再进行小组合作研究周长与直径的倍数。

  3、充分发挥合作意识

  现代人必备的素质之一是合作精神,因此本节课多次让学生合作去发现、解决问题,同时我及时给予帮助指导。不仅让学生学会合作,而且让学生在合中提高效率。如在测量圆的周长与直径的倍数时,提醒学生分工,但测量遇到不便时能合作操作,既提高效率,又保障准确性

  4、努力方向

  上课中发现学生的动手能力较弱,操作时动作慢并较僵硬,这说明在*时的课堂中缺乏这方面的培养和训练。我想在以后的教学中应尽可能创造条件,培养学生的动手能力。教师的基本素质有待提高,如教学语言不够生动活泼,板书不够工整、漂亮,在教学设计上还能再加以创新,更好地调动学生的学习激情。

《圆的周长》教学反思13

  今天我们学习《圆的周长》。教学伊始,课本中教给了学生测量圆形周长的两种方法:滚动法和绕线法,但这两种方法有很大的局限性,很多情况并不适用。因此,我们需要探索一个简单易操作的方法。我们知道,正方形的周长与它的边长有关系,那么圆的周长与 它的什么有关系呢?我让同学们大胆猜测。有的同学根据圆的特点,他们认为,既然圆的半径决定圆的大小,那么圆的周长很可能与它的半径有关系,还有的同学通过观察发现:圆的直径越长,圆就越大,所以圆的周长很可能与它的直径有关系。所以,我就要求他们通过填表探索圆的周长与直径的关系。

  事先,我已经让每一位同学准备了一个圆形纸片。所以我让每一位同学拿出自己准备的学具,然后在四人小组内完成表格。表格要求分别量出4个圆的直径和周长,并算出周长除以直径的商。孩子们迅速行动起来。但十分钟过去了,没有一个小组完成,十五分钟过去了,也只有一个小组完成。这时我才发现,很多的小组成员之间不会合作,他们虽然坐在一起,但却是自己在做自己的事。由于有的同学准备的圆形纸片很大,所以一个人操作起来很难,十分钟以至很长时间过去了,却没有结果。哦,原来孩子们不会合作。这时,我才开始教给他们合作的方法,但这时下课铃已打响,这节课的教学任务又没有完成 。

  通过这节课我发现,在教育教学过程中,我们不仅要对教学流程进行精心的设计,同时要注重学生学习方法的指导,特别是需要合作的地方要指导他们如何合作,因为有效的合作是提高学习效率的重要保证。

《圆的周长》教学反思14

  讲圆的周长时,我想放手让学生经历探索的过程,真正理解圆的周长的公式。主要基于两点考虑:

  1.前段时间远程培训时专家对探究教学的引领。

  2.以往的教学中,周长和面积这部分知识教的很辛苦,但学生掌握情况不理想,他们不理解公式背后的算理,导致我和学生都特别累。因为总有一种担心,担心课堂上时间不够用,所以不敢大胆放手让学生在课堂上主动探索知识,匆匆的推导出公式,然后是充分的练习。但是,几天之后,总会发现依然有同学不会用公式。每到这时,我都觉得很无语,也总在生气的责怪学生这么简单还没学会。所以,今年在讲这节课之前,我认真反思了以前自己在讲课方面存在的一些不足,想让课堂真正的交给学生。

  探索过程如下:

  1.怎样得到圆的周长?你有哪些好方法?

  (1)用线围圆一周,放在尺子上量一下线的长度就是圆的周长。

  (2)用卷尺围一圈,也能得到圆的周长。

  (3)在圆上做个记号,从记号开始在尺子上滚动一周。郭家乐同学这个方法很好,全班只有他一位同学这样说。这个同学很棒啊,当时我这样想,当然,没忘记及时的表扬他一下。

  学生说出来以上几种方法。

  2.请你用以上第一种和第三种方法量出你手中圆的周长。

  3.老师演示:直径和周长的关系。

  记录:直径10厘米,周长31厘米。

  4.同桌合作:

  测量你们圆的直径和周长。

  5.告诉学生周长和直径的比值是3倍多一些。这个地方我没让学生去计算,太占用时间了。这个地方学生容易弄不清楚,所以我把它板式出来:圆的周长*直径=3倍多一些,提醒学生注意这里比的前项和后项。

  然后我讲解圆周率的有关知识。整个课堂注重让学生探索、实践,经历测量得出圆的周长的方法,学生探索的过程还比较积极认真。教学是遗憾的艺术,没有让学生计算圆的周长和直径的关系是这节课的遗憾。当时考虑时间问题,现在想应该让学生计算一下自己的就行了,然后汇报结果,最后对接近正确结果的进行表扬,鼓励他们操纵过程认真细致,所以误差小。那么这样,这些受表扬的同学的小脸一定会灿烂如花,教学效果也会更好。

  这节课的课堂设计和自己以前相比有很大进步,学生的探究活动过程还算完整,但不“完美”。我想,好的课堂应该是高效的,那就是在课堂上尽可能的让学生掌握所学知识,体验探究的乐趣和价值,好的探究活动来自于老师的智慧,这种智慧就要靠我们不断地反思,在反思中不断的进步。

《圆的周长》教学反思15

  首先感谢学校领导给我这次锻炼自己、磨炼自己的机会。圆的周长这节课中我认为做得比较好的地方有以下三点:

  1、在引入新课时我利用课件显示小黑狗沿着正方形路线跑,小黄狗沿着圆形路线跑。这样的比赛公*吗?激起学生的学习兴趣。从而复习正方形的周长知识。接着提问:如果要求小黄狗所走路程,实际是求圆的什么呢?让学生揭示课题:圆的周长(板书)正方形的周长我们会求,那么圆的周长该怎样求呢?利用问题设下认知障碍,激发学生的求知欲望。我认为这一点做得比较好。

  2、让学生初步感知了“圆的周长”后,我拿出教具圆片,让学生指一指圆的周长,感知围成圆的周长是一条曲线,然后用自己的话概括圆的周长,最后师生共同总结出圆的周长概念。接着学生用绕线法、滚动法量出圆的周长,教师指导操作要点。最后学生同桌合作用两种方法量出圆片的周长,充分认识圆周长的同时,培养学生的合作精神。

  3、为学生提供一个合作探究的*台。我把学生分成若干个学习小组,每组中学生的层次不同,并要求学生配备直尺、绳等学具,让每个学习小组共同完成绳测法、滚动法测量周长,依所测数据找出直径与周长的倍数关系,推导圆的周长公式三个操作活动,经历知识的形成过程。在教学中独立思考、合作操作、小组交流等学习方式交互运用,引导学生在认知矛盾、实际操作中去思考、探究、发现、解决问题。

  当然这节课中同样也存在一些不足之处:

  1、在小组合作探究中(学生测量计算)花费的时间过多,导致后面的时间过于仓促。

  2、对于学生的回答有重复现象,学生对学生的评价很少。课堂上的语言还应多锤炼。

  在今后的教学中我要发扬自己的优点,改掉自己的不足多锤炼自己的语言,使自己尽快的成长起来。

推荐访问:反思 位置 关系 《圆与圆位置关系》教学反思3篇 《圆与圆的位置关系》教学反思1 《圆与圆的位置关系》教学反思100字

版权所有:九力公文网 2013-2024 未经授权禁止复制或建立镜像[九力公文网]所有资源完全免费共享

Powered by 九力公文网 © All Rights Reserved.。备案号:苏ICP备13036920号-1