《*行四边形面积》教学反思1 《*行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出*行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与*行四边下面是小编为大家整理的2023年《*行四边形面积》教学反思3篇,供大家参考。
《*行四边形面积》教学反思1
《*行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出*行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与*行四边形之间的特殊关系,并提出大胆的猜想。通过动手操作验证的方法推导出*行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。
一、导入环节中的得与失
得:复习长方形的面积为新知探究做好铺垫。
失:从复习旧知到情境导入衔接不够自然,略显牵强。
二、探究新知环节中的得与失
得:先用数方格得方法探究*行四边形的面积时,处理的较为细致。动手操作时,也让学生提前准备了学具,初步回忆了其特点,充分发挥学生主体性。
失:在探究环节,不能很好的利用学生的错误资源,来让学生纠其错误,达到巩固新知的效果,在学生说出其变化时引导不到位,导致学生得出*行四边形面积公式有些被动。
三、巩固练习环节中的得与失
得:最后一道题设计较好,让学生知道算*行四边形的面积时要选择高与相应的底。
失:时间安排的原因,处理的过于粗略。
之后的教学中,备课时,不仅要在备教材这下功夫,也要在备学生这多努力,多预设几种学生可能出现的情况,应该如何应对,做到全面把控课堂。
《*行四边形面积》教学反思2
教学目标:
1、使学生经历探索*行四边形面积计算公式的推导过程,掌握*行四边形的面积计算方法,能应用*行四边形的面积公式解决相应实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想。
教学重点:探索并掌握*行四边形的面积计算公式。
教学难点:理解*行四边形的面积计算公式的推导过程。
教具学具:自制长方形框架、方格纸、课件、*行四边形卡片、剪刀、三角板、直尺等。
教学过程:
一、创设情境,铺垫导入
1、(出示教具)这是一个长方形框架,它的长是6厘米,宽是4厘米,它所围成的长方形面积是多少?你是怎样想的?
(板书:长方形的面积=长×宽)
2、如果捏住这个长方形的一组对角,向外这样拉,(教师演示)同学们看看,现在变成了什么图形?(*行四边形)
3、你还知道关于*行四边形的哪些知识?(出示课件*行四边形)
4、这样一拉,形状变了,面积变了吗?
5、(对认为面积不变的同学质疑)你认为*行四边形的面积是怎样计算的?(生:*行四边形的面积等于相邻两条边的乘积)
6、究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
请同学们用数方格的方法来算出这个*行四边形的面积,(教师把长方形及拉成的*行四边形框架放在方格纸上,数一数它们的面积)数的时候要注意,每个小方格的面积是1*方厘米,不满一格的当半格计算。(通过学生数一数,得出这个*行四边形的面积是18*方厘米,使学生明确拉成的*行四边形面积变少了,相邻两条边的乘积不能算出*行四边形的面积。)
7、看起来,用相邻的两条边相乘不能算出*行四边形的面积,那么,*行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨*行四边的面积计算。(板书课题:*行四边形的面积)
二、合作探索,迁移创造
1、用数方格的方法计算*行四边形面积。
(1)、出示面积和*行四边形相等的一个长方形。提问:数一数,这个长方形和这个*行四边形的面积相同吗?
(2)、小组讨论,观察比较两个图形的关系,提问完成表格。提问:你发现了什么?
引导学生明确:*行四边形的底和长方形的长,*行四边形的高和长方形的宽分别相等,它们的面积也相等。
(3)根据你的发现你能想到什么?
2、图形转换
(1)、不数方格能不能计算*行四边形的面积呢?(教师展示一个*行四边形卡片)这是一个*行四边形,我们不知道它的面积如何计算,能不能把这个*行四边形转换成一个与它面积相等的图形来计算它的面积呢?(能)可以转换成什么图形?(长方形)怎样将*行四边形转换成与它面积相等的长方形?
(2)四人小组合作,用课前准备好的*行四边形卡片和剪刀,把*行四边形剪拼成长方形。(学生动手操作,小组汇报上台演示剪拼过程)边剪拼边观察思考:拼出的长方形和原来的*行四边形相比,面积变了没有?拼出的"长方形的长和宽与原来的*行四边形的底和高有什么关系?(板书:*行四边形 底 高)
(3)(教师演示说明)这个长方形的面积与原来的*行四边形面积相等,这个长方形的长与原来*行四边形的底相等,这个长方形的宽与原来*行四边形的高相等。(板书连接符号)
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么*行四边形的面积怎样计算?(*行四边形的面积等于底乘高)
(板书:*行四边形的面积=底×高)
师:如果用S表示*行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)(教师板书:S=ah)
4、出示例1(课件),例1给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)要求*行四边形的面积,必须知道什么条件?
三、层层递进,拓展深化
1、算一算,填空,(课件出示)指名回答。
(1)、一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )*方厘米。
(2)、一个*行四边形的底是8米,高是5米,这个*行四边形的面积是( )*方米。
(3)、一个*行四边形的高是6分米,底是9分米,这个*行四边形的面积是( )*方分米。
2、用手势判断对错(课件出示),先读题后再判断,并说说错误的原因。
(1)、把一个*行四边形割补成长方形,它们的面积相等。( )
(2)、一个*行四边形的底是7分米,高是4分米,面积是28分。( )
(3)、一个*行四边形的底是5米,高是4分米,面积是20*方米。( )
3、想一想 :(课件出示在一组*行线之间有两个等底等高的*行四边形图。)
师:你发现了什么规律?(引导学生理解等底等高的*行四边形面积相等)
四、总结全课,提高认识
反思一下刚才我们的学习过程,你有什么收获?
计算*行四边形的面积必须知道什么条件,*行四边形的面积公式是怎样推导出来的?
《*行四边形面积》教学反思3篇扩展阅读
《*行四边形面积》教学反思3篇(扩展1)
——*行四边形的面积教学反思10篇
*行四边形的面积教学反思1
*行四边形的面积是五年级上册几何图形计算的内容, 本节课的教学 , 我可以看到 学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为 本节课 成功的关键在于 教师大胆放手, 学生通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们知道,只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科内容的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
本节 教学中, 我 带领学生进行实地考察,看到了*行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”上述这个教学片断中,对传统的*行四边形面积的教学方法作了大胆改进,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题—把*行四边形转化为长方形奠定了数学思想方法的基础。
这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把*行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:*行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证。
才得到“灵感”的,而*行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。海纳百川,有容乃大。
(三) 培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现*行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这种方法行的通吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。
教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持*等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是, “ *行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高? ”“ 该怎样来验证自己的猜想呢? ”“ 怎样用数方格来数出*行四边形的面积? ”“ 怎样用转化的方法把*行四边形转化成长方形呢? ”这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
*行四边形的面积教学反思2
金秋十月,桂花飘香。我有幸参加《*行四边形的面积》“同课异构”的教学研讨。下面我将自己的教学做如下反思:
建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,本课创设的问题情境是以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。
有助于学生感受教学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,理解数学,提高学生的数学解决问题的能力。
在学生探索活动开始之前,教师没有任何帮助,但正是这种没有铺垫的教学,学生真实的思维活动得到了体现,问题解决的策略不再像前述教学整齐划一,课堂更加丰富多彩,教学过程充满了生命活力。实践证明,学生完全具备独立解决问题的能力,他们的成长并不需要教师“迫不及待”的帮助,他们需要经历从混沌到清晰的过程、正确与错误的考验,他们需要的是探索的时空、交流的机会和心理安全的、富有激励性的学习氛围,这些才是学生需要的帮助。
在操作探索,推导公式中。先启发谈话,猜测*行四边形的面积,然后让学生实践操作,让学生拿出剪好的*行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个*行四边形拼成一个面积相等的长方形呢?
学生动手若干分种,教师要注意巡视,选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述*移(可能学生说得不准确)。这样让学生凭借“独立思考、小组交流互评”的渐进过程进行充分的自主探究,在“亲历”和“体验”中初步感悟计算*行四边形面积的方法。这样设计,让学生经历从特殊问题到一般问题的过程,使得学生的数学学习做到重点突破,为后面进一步学习面积公式作好铺垫。当然,在这个环节中不管是操作还是汇报,感觉还不够到位。
感悟
正如波利亚所说:“学习任何知识的最佳途径都是由自己去发现。因为这种发现,理解最深刻,也最容易掌握内在规律与联系。”在案例二中,正是有了自主探索的时空,学生才充分调动自己原有的认知结构和生活经验,发挥自己的聪明才智,通过不同角度的探索,想出这么多的方法来解决新问题;正是有了交流的机会、展示的舞台,学生才敢于大胆表达不同的见解,提出个性化、创造性的问题解决办法;也正是经历了从混沌到清晰的过程、正确与错误的考验,学生才从中体会到了数学思考的乐趣、探索成功的喜悦。
多次实践使我们体会到,只有当教师真正了解了学生的需要,才能做到“该出手时才出手”,才能在学生感到“柳暗花明疑无路”时,他才巧妙地“拨开乌云见月明”,让学生眼前“豁然开朗”,只有这样的帮助才是促进学生发展所需要的真正的帮助。也许这样,我们的学生会遇到困难和挫折,我们的课堂会失去“严谨”和“流畅”,也许预设的任务会难以完全达成,但当我们发现学生敢于独立思考,奋力向前,大声喊出“让我试试”;当课堂成为学生的天地,真正体会到“海阔凭鱼跃,天高任我飞”的美妙滋味时,身为教师,我们还有什么理由一味地信守着“师者,传道授业解惑”的传统观念呢?
我们是农夫,但不是“拔苗助长”的农夫,应是一个懂得怎样真正帮助禾苗成长的“农夫”,是一个让“禾苗”充分享受自由空间、阳光和雨露,也经历风吹雨打,最终能品尝到“硕果累累”之喜悦的农夫。
*行四边形的面积教学反思3
《*行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解*行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:
优点:
一、注重学生的课前预习工作,让学生做好了学习新知的准备。
在教学前,我先让学生预习《*行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握*行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(*行四边形卡纸、剪刀)。
二、注重课堂上学生的自主学习,让学生成为学习新知的主人。
在探究*行四边形的面积计算方法时,我引导学生思考“如何将*行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原*行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的提高。由此,对*行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。
三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。
在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。
不足与相应措施:
学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。
*行四边形的面积教学反思4
本节课是学生在已掌握了长方形面积的计算和*行四边形各部分特征的基础上进行学习*行四边形的面积的计算的,我能根据学生已有的知识水*和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握*行四边形面积的计算公式,能正确计算*行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和*移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是*行四边形面积计算公式的推导,使学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和*行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和*移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,*行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、*移把*行四边形转化为长方形,从而找到*行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到*行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想*行四边形的面积可能与谁有关,该怎样计算,接着引出你能将*行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把*行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把*行四边形转化成长方形的方法有三种,第一种是沿着*行四边形的顶点做的高剪开,通过*移,拼出长方形。第二种是沿着*行四边形中间任意一高剪开,第三种是沿*行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到*行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
*行四边形的面积教学反思5
《*行四边形的面积》是五年级上册第六单元多边形面积的起始课,后面三角形面积、梯形面积和组合图形的面积都是在此基础上学习的。
本节课的重点是:运用转化的方法推导出*行四边形的面积公式并能正确地说出*行四边形的面积公式的推导过程。在本节课的教学中,为了突破重点,设计了以下的活动:
1、设计了比较两个图形大小的小游戏,体会转化思想在数学中的应用。
2、设计了数一数,剪一剪,拼一拼求*行四边形纸片面积的活动,通过小组合作,借助适当的工具,运用转化的方法,把*行四边形转化成长方形,推导出*行四边形的面积公式并能正确地说出*行四边形的面积公式的推导过程。
3、通过大量的实际问题,能应用*行四边形的面积公式解决生活中的问题,并在解决问题的过程中理解*行四边形的面积是用相对应的底和高相乘,等底等高的两个*行四边形的面积相等。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”。在数学教学中,更要注重数学思想方法的渗透。学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
在这节课中,以“猜猜谁的面积大”的小游戏,渗透了“转化”的思想方法。然后我设计了数一数,剪一剪,拼一拼求*行四边形纸片面积的活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?
长方形的长和宽与*行四边形底和高有什么关系?再思考后,学生得出结论:因为长方形的面积=长×宽,所以*行四边形的面积=底×高。
学生掌握了推导*行四边形面积的方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。
这个求证过程也促进了学生猜测、验证等思维能力的发展。学生在本节课的学习中有点紧张。在说推导过程时,没有说出最完整的推导过程,有点遗憾。与我的语言引导也有关系,在今后的教学中,我会注意语言的引导。
*行四边形的面积教学反思6
苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。
在本节的*行四边形面积公式的推导过种中我就努力让学生得到这种需要。以小组为单位我先让学生尝试自己通过动手操作寻找出求*行四边形面积的方法。在学生汇报的过程中每个同学都很兴奋,我也尽可能让他们大胆地表达自己的想法,对于学生的想法,我均给予鼓励。在众多的想法中有个同学提出:*行四边形面积等于两条相邻边的乘积。理由是长方形和正方形面积公式猜想而得。基于此我让学生再展开想像的翅膀,大胆设想,验证这一想法的准确性。再一次探究的火花被燃起。虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。
因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证 因而得以灵感。而*行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
*行四边形的面积教学反思7
在《*行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。这节课我设立的教学目标是:(1)使学生通过探索、理解和掌握*行四边形的面积计算公式,会计算*行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。 反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、可取之处:
1、注重数学学习方法的渗透 在数学教学中,要注重数学思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?引出你能求*行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知 ,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把*行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破*行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较*行四边形和长方形长和宽的关系,推导出*行四边形面积的计算公式。
2﹑充分给足学生自主探索的时间。
本节课的教学重点是掌握*行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把*行四边形转化已学过的基本图形,通过找关系推导出*行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把*行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原*行四边形的面积相等,长方形的长相当于*行四边形的底 ,长方形的宽相当于*行四边形的高,因为长方形的面积= 长 × 宽 ,所以*行四边形的面积= 底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所悟。
二、还需要改进的地方:
1、在进行把*行四边形转化为长方形时,让学生理解长方形的长、宽分别和*行四边形的底和高相等是学生推导*行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,由于担心时间不够也省了,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了学生对*行四边形面积推导过程茫然的情况。
2、学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着*行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。例如,*行四边形不但可已转化成长方形,如果是一个菱形(也就是四边相等的*行四边形),通过割补、*移是可以转化成正方形的,因为担心自己不能很好的把握课堂节奏,完不成教学任务,所以这节课我只处理了将*行四边形转化成长方形的一种情况,这样就限制了学生的思维,没有给学生思维的空间和机会。所以我在讲梯形和三角形的面积时便吸取了这次的经验教训。给学生思维的空间和机会,让他们从众多的方法中找到最适合自己的,加深学生对新知识的理解和掌握。
教学是一门有着缺憾的艺术。我相信做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
*行四边形的面积教学反思8
20xx年10月24日,我参加了经开区数学基本功比赛,执教《*行四边形的面积》这节课,实施教学后一些问题让我陷入思考。下面从我备课及执教的经历谈起。
首先,对于内容的分析,我在教学设计中已经阐明,因此不再赘述。对于学情,我以本校五年级学生为参照,调研了本校学生对此知识的想法,根据学生问卷的回答情况发现了这样的问题:
1、长方形的面积公式学生基本都能写对,但出现与算周长混淆的情况,并且已经想不起来长方形的面积是由数方格推导出来的。
2、求*行四边形的面积时出现这样几类情况。
(1)用算周长的方法计算,占15%;
(2)用邻边相乘的方法计算,占35%;
(3)知道转化成长方形,但不能正确计算,占23%;
(4)其他(包括不知道怎么算),占27%。
虽然我深知读懂教材、读懂学生的重要性,但理解有限,在设计与执教过程中,反映出以下三个问题。
一、学情分析能力不足
我虽然进行了学情分析,但由于自己的理解有限,我没有分析到其实学生对于找原来的*行四边形与转化后的长方形之间的等量关系其实是不理解的,是一个难点,导致我以如何向学生渗透转化思想为重心了。
二、课堂调控能力有限
在实施教学的时候由于学生的学情不同,执教班级学生基本已经知道*行四边形的面积等于底乘高,加之我的现场调控能力有限,因此并不能顺着学生的思维进行教学,跟我设计的初衷产生了水土不服的现象,但后来我仔细回想了执教过程中的一些学生表现,优等生知道公式,并不代表所有学生都知道,应该具备一些调控能力让所有学生经历验证的过程,但错过了,这一点也说明我的课堂调控能力是需要加强的。
另外一个问题是找等量关系时,我由于时间的限制,代替了学生的观察发现,带领学生直接演示了原来的*行四边形与转化后的长方形之间的关系,推导出了公式,这点挺遗憾的。
三、数学语言不严谨
在此次教学中,我的数学语言不够严谨,比如数学上专业的术语“*移”等说得不规范。
针对以上问题我想教师的调控能力这些非一日之功,在以后的课堂教学中我会尽量注意记录自己的问题与语言,不断反思,从而慢慢提高,增强自己上现场课的经验。
对《*行四边形的面积》的设计,我没实现的是,找等量关系过程对学生是一个难点,我对突破这个难点的想法如下。
预设教学片段:
师:同学们,把我们的长方形还原为*行四边形,你能标出*行四边形的底和对应的高吗?请同学们动手标一标吧。
师:同学们,把*行四边形转化成长方形,你能找出原来的*行四边形和转化后的长方形有哪些相等的关系吗?小组讨论并相互说说你的发现。
当然,这是我的初步想法还没有进行实际教学,因此不知道这些能不能突破难点。
通过本次讲课,让我真正乐趣无穷的是对课不断地思考,发现课的奥妙,有遗憾,有困惑、有思考……我想这些都是成长,教学时间那么长,我想读懂教材,读懂学生,这不容易的事总会慢慢理清,然后,不断成长!
*行四边形的面积教学反思9
孩子们已经认识了三角形、*行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了*行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握*行四边形、三角形、梯形的面积计算公式及公式之间的关系,要体验图形*移、旋转等变化……感觉任务非常艰巨。
*行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。
邻边相乘(长×宽)的面积计算方法是学生掌握的已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的方法,将一个*行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“*行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。
经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的改造,沟通“教”与“学”的通道。
在学生坚信这个*行四边形面积=底×邻边=9×6=54*方厘米时,呈现格子图。于是学生将*行四边形的面积锁定在(8×4)32*方厘米和(10×4)40*方厘米之间。这一过程不仅学生认识到长方形面积和*行四边形面积的差异,也让学生在面积的度量层面沟通了*行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到*行四边形的面积计算公式就水到渠成了。
*行四边形的面积教学反思10
1、深刻理解教材是有效课堂的基础
教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?
教学之前,我觉得数方格对*行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。
这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现*行四边形的`底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。
2、课堂环节的合理设计是有效课堂的保证
教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。
教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。
然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究*行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。
因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。
3、数学思想方法的提炼是有效课堂的精髓
让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。
如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。*行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算*行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。
教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完*行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿*行四边形对角线剪开,通过*移得到一个新的*行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。
课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。
《*行四边形面积》教学反思3篇(扩展2)
——《*行四边形的面积》教学反思10篇
《*行四边形的面积》教学反思1
《*行四边形的面积》一课的教学,我着重培养学生通过剪、拼、摆等动手操作的活动来让他们主动探究*行四边形的面积计算公式,掌握*行四边形面积计算公式并能解决实际问题,同时又培养了学生积极参与、团结合作、主动探索的精神。课结束后我进行反思了,本节课是能促进学生全面发展的课堂,体现新课标理念的课堂,从中也总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、 值得肯定的地方
1、 注重数学专业思想方法的渗透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆*行四边形与长方形的联系,想一想长方形的面积是怎样求的?让学生想一想怎么求*行四边形的面积,学生一下子就能看出可以把*行四边形转化成长方形求出它的面积,渗透了转化的思想,为后面的学习奠定了基础。
2、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了猜一猜、剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以*行四边形的面积=底乘高。学生掌握了*行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
3、注重了师生互动、生生互动
现在我们都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:验证完猜想后,师问:两种猜想,两个结果,到底哪一个才是正确的,哪一个才是我们要的间接测量的先进方法呢?还有当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。
4、练习设计层层递进
本环节,我出示了不同层次的练习,如:知道了*行四边形的两个高一个底怎么样求它的面积?出示几个看起来不相等的*行四边形,其实面积是相等的,让学生明白等底等高的*行四边形面积相等。这样从“基本题—变式题—发展题”,层层递进,让学困生有奔头,中间生有提高,优秀生有发展,让我们的数学课堂收获遍地开花的效果,最终实现课标要求的“让不同的孩子得到不同的发展”。
二、教学中的不足:
1、教师灵活性不强,对个别细节处理的不够,不能有效的抓住学生出现的问题。
2、小组合作的能力差,缺乏对学生小组交流能力的培养,也缺乏师生间的`互动交流。
《*行四边形的面积》教学反思2
新课标指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。在《*行四边形的面积》一课的教学中,我经过让学生动手实践,自主探究,让学生经历了知识的构成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学专业思想方法的渗透。
我们在教学中一贯强调,授人以鱼,不如授人以渔,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学本事。在这节课中,先让学生回忆*行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出能够用数方格的方法来求*行四边形的面积。把这两个图形按每个格1*方米的方法来数,数的过程中提示学生:能够把不满一个格的按半个来数。学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有本事的学生向转化的方法靠拢。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地经过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一齐来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以*行四边形的面积=底х高。学生掌握了*行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题供给了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维本事的发展。
三、分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着重基础、验本事、拓思维的原则,设计了基础练习(算出下头每个*行四边形的面积);提升练习(量出*行四边形的底和高的长度,并分别算出它们的面积);
发散练习(下图两个*行四边形的面积相等吗?为什么?在这条*行线之间,还能够画出几种形状不一样而面积相等的*行四边形)。整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生应对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。
四、需要改善的地方
本节课的不足之处有:在进行把*行四边形转化为长方形时,书上虽只给出了两种方法,可是实际上有很多不一样的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。并且这个环节过后,忘记强调一下,要沿着*行四边形的高剪下,才能*移拼成一个长方形。让学生说的部分还是显得很仓促,自我急于把正确答案给出,这是迫切需要改正的。
教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改善,我们的课堂就会更加精彩。
《*行四边形的面积》教学反思3
《*行四边形面积的计算》这一资料是在学生学习了长方形、正方形面积计算以及*行四边形的特征,并会画出*行四边形的底和对应的高的基础上进行教学的,是学习三角形、梯形面积计算的基础。现将本节课的教学反思如下:
1、重视操作体验,发展学生空间观念
《数学课程标准》指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。
教学中,我关注学生已有的知识经验,充分放手,先让学生大胆猜想,进取地为自我的猜想寻找验证的方法,这样学生主动地参与到学习中。之后我引导学生利用手中的学具,让学生动手实践,学生在实践过程中想到了数方格和剪拼的方法,自主探究出*行四边形沿着高剪下来能转化为长方形的方法。小组交流、团体汇报找到*行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到*行四边形面积计算公式是底×高,再利用讨论交流等形式要求学生把自我操作转化推导的过程叙述出来,以发展学生思维和表达本事。这样教学对于培养学生的空间观念,发展解决生活中实际问题的本事都有重要作用。
2、注重思想方法渗透,引导探究
转化是数学学习和研究的一种重要思想方法。学生虽然想到了把*行四边形变成长方形,但并不明白这就是转化,我对学生的这一方法进行了提升。在具体操作过程中,我努力让学生经过猜想验证结论的过程,帮忙学生掌握探索问题的一般方法,为后面探究三角形、梯形的面积计算方法供给方法迁移。
运用现代化教学手段,对几种剪拼的方法进行总结,为学生架起由具体到抽象的桥梁,使学生清楚的看到*行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
3、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求*行四边形面积,规范格式,检验学生是否到达运用公式,解决实际问题。
第二题4道确定题,包含了学生的一些常见错误。第一道是强调面积单位,第二道强调计算时单位名称的统一,第三道强调*行四边形的面积是底乘高而不是底乘邻边,第4道强调底和高必须对应,强化学生的认知。
第三题比较*行四边表的面积,认识等底等高的*行四边形的面积相等。本课练习能促使学生牢固的掌握新知。
值得反思的的是:
1、*行四边形转化成长方形课本上给出了两种方法,一种是沿着*行四边形的左上角的顶点剪开,另一种是沿着任意一条高剪开。其实并不是只沿着高剪开能拼成长方形,我能想到的还有将两个角剪下来*移到相对的部分。在教学过程中并没有展示这种方法,一是在学生探究过程中学生没出现这种方法(也许放的不够的原因);二是研究到学生的实际水*,不敢讲得太深。
2、沿着*行四边形的高剪下来*移到相对的部分,必须会拼成长方形吗?这也是需要验证的。也是研究到实际情景,把这一部省去了,不明白是否会给学生造成错误的思维方式,是不是扼杀了学生数学的天赋。
3、预设不充分,学生的主体地位体现不够。展示数方格这种方法的时候,学生是沿着*行四边形的高剪下来,移到另一边去拼成长方形,把半格的拼成整格来数,这是一种多么好的方法,但教师不但没有预设到,并且没有及时领会到学生的意图,急于走预设,把正确答案给出,导致这一环节不完整,教师思路不那么清晰了,这是我今后最应当注意并改正的。
4、透过这一节课的教学能够看到,很多学生不敢动手,有想法不会表达,所以我们一线教师应当清醒地认识到加强常态课研究的必要性,在日积月累中提升学生的数学素养。
教学是一门有着缺憾的艺术。做为教师,往往在执教后留下或多或少的遗憾,只要我们思考了,改善了,我们的课堂就会更加精彩。
《*行四边形的面积》教学反思4
1、深刻理解教材是有效课堂的基础
教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?
教学之前,我觉得数方格对*行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。
这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现*行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。
2、课堂环节的合理设计是有效课堂的保证
教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。
教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。
然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究*行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。
因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。
3、数学思想方法的提炼是有效课堂的精髓
让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。
如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。*行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算*行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。
教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完*行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿*行四边形对角线剪开,通过*移得到一个新的*行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。
课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。
《*行四边形的面积》教学反思5
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,然后通过实例验证,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将*行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来*行四边形什么变了,什么没变?拼成长方形的长和宽与原来*行四边形的底和高有什么联系?通过上面问题的思考,学生对*行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个*行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来*行四边形的底,拼成的长方形的宽相当于原来*行四边形的高,*行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以*行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解*行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
第一层:基本练习:书本P82第1题
有利于学生加深对图形的认识,正确分清*行四边形底和高的关系。
第二层:综合练习:
1、你能想办法求出下面两个*行四边形的面积吗?要求这两个*行四边形的面积必须先干什么?
让学生自己动手作高,并量出*行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个*行四边形的面积吗?
通过不同的高引起学生的混淆,在计算中让学生明确在计算*行四边形面积时底要找出与它相对应的高,这样才能准确求出*行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个*行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的*行四边形吗?可以画几个?(图在课件中)
学生综合运用知识,进行逻辑推理,明白*行四边形的面积只与底和高有关,等底同高的*行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、*移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
《*行四边形的面积》教学反思6
这堂课能围绕教学目标层层展开,先从身边的情景引入,激发学生探求新知的兴趣;接着让学生猜想*行四边的面积可能怎样求?再通过活动单一的内容用数格子的方法验证。学生都能数出它们的面积,在这个环节中学生做的很好。
接下来又用转化方法进行再次验证,仍然是以小组合作的形式进行,让学生自己动手画一画、剪一剪、拼一拼推导出*行四边形的面积计算公式。然后让学生到前面演示整个操作过程。在这过程中,我能用严密、准确地、有逻辑性的语言,富有层次性的问题层层深入的引导学生来探究、发现规律,得出结论,效果良好。接着我又向学生介绍了不一样的几种方法,可以让学生感受到方法很多,也可以让他们有再试一试的想法,可以可以发展他们的创新思维。而且,形象的多媒体课件为公式的推导起了一个很好地作用。
课件还很好的演示了*行四边形转化成长方形的过程,看起来很直观。但是本节可课也有不足之处,在书写板书时最后的那个*行四边形画的不好看,线没有画直;还有最后望了否定学生的另一种猜想边×边的方法不行。在今后的教学中我一定注意书写板书,注意课堂的完整性。
《*行四边形的面积》教学反思7
“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的教学观。
对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《*行四边形的面积》来谈一谈?
1、把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、*移、旋转、演示等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在*行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把*行四边形转化成长方形,推导出*行四边形的计算方法,在*等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。
3、 有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。
4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
《*行四边形的面积》教学反思8
《*行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解*行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:
优点
一、注重学生的课前预习工作,让学生做好了学习新知的准备
在教学前,我先让学生预习《*行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握*行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(*行四边形卡纸、剪刀)。
二、注重课堂上学生的自主学习,让学生成为学习新知的主人
在探究*行四边形的面积计算方法时,我引导学生思考“如何将*行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原*行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的.提高。由此,对*行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。
三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。
在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。
不足与相应措施
学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。
《*行四边形的面积》教学反思9
*行四边形的面积,是教师相当熟悉的一堂课,我曾多次听这课,发现*行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以教学注重对学习“*行四边形面积”的知识铺垫,仅仅关注学生对*行四边形面积计算方法的识记与演练,掌握;只要结果,不要过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得*行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求*行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态,因此在课前、课中我一直思考以下四个问题:
1、数学学习,除了关注知识的传承,还应关注什么?
2、怎样从学生的角度出发设计教学?
3、怎样让数学课堂变得厚重?除了显性课程外,学生还能获得哪些方面的发展(隐性课程)?
一节厚重的数学课,总是能够让人看到学生数学素养的提升。
一节厚重的数学课,总是能够让人看到学生数学地思考问题。学生有潜力,并非这个孩子考试的分数高,而是这个孩子的后劲足。这些后劲足的孩子思维活跃,往往能在复杂的信息中抓住关键点,能透过复杂的现象抓住数学的本质。也就是,这些孩子会数学地思考问题。
4、如何优化课堂结构?
基于以上四个问题的思考,我把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法。我在设计与执教“*行四边形的面积”一课中获得一些启示。
一、以数学知识教学为载体,渗透“转化”的数学思想方法,发展学生主动获取知识的能力。
“转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。*行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。
教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算*行四边形面积”这一新问题,就很自然地得到了两种猜想:用*行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用*行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个*行四边形的面积怎么会有两个答案呢?
激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。
二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。
现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究*行四边形面积公式的数学活动中。当学生对*行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。
这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
《*行四边形的面积》教学反思10
这节课我们所学习的的内容主要是*行四边形面积的计算。是在学生以前学过的长方形的面积和*行四边形认识的基础上学习的,*行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以*行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会*行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。
一、课程开始,我先让学生回忆学过了哪些*面图形,想一想长方形的面积是怎样求的?
*行四边形的面积怎么求呢?猜想*行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。
二、注重学生数学思维的发展
在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现*行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出*行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以*行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了*行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、不足之处
本节课还有一些不足之处。在进行把*行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和*行四边形的底和高相等是学生推导*行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着*行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。
《*行四边形面积》教学反思3篇(扩展3)
——《*行四边形面积》教学反思总结3篇
《*行四边形面积》教学反思总结1
一、精心创设情境。
心理学研究表明,学习材料与学生的生活经验相联系时,学生对学习最感兴趣,会觉得内容亲切,易于接受和理解。创设情境,将静态的生活资源加工成动态的数学学习资源,让学生感受到熟悉的活动情境蕴含着许多奇妙的数学知识。数学是从现实生活中抽象出来的,生活中处处有数学,把熟悉的生活事例引入数学课堂,使数学内容具有丰富的现实背景。本节课,精心创设情境,沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体,既让学生对数学倍感亲切,又利于学生理解数学,热爱数学,设定恰当的生活情境和利用真实的生活原型展开数学活动,充分体现了数学与现实世界的密切联系,更重要的是,能让学生学习富于真情实感的,能动的,由活力的知识,使学生的情感世界获得实质性的发展,提升。
二、努力营造学习氛围。
为学生营造宽松、民主、和谐的学习氛围,源于教师对学生真挚的爱。在教学中,我关注、激发、保护、帮助、鼓励学生,使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。创设良好的氛围,使每个学生都有展示自我的机会,都敢于发表自己的见解,培养学生善于倾听,善于欣赏他人的良好品质。
三、鼓励学生大胆猜想。
鼓励学生大胆猜想,调动学生的思维,培养学生的创造能力。再教学伊始,就让学生大胆猜测,*行四边形的面积可能怎样计算?由于受长方形,正方形面积计算方法的影响,有学生说是底乘高;也有学生受知识的负迁移,说是邻边相乘。两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。鼓励孩子们大胆猜测,有利于孩子们在今后的学习中愿意把自己的“原始”思维状态表现出来,这是一笔有价值的学习资源。
四、注重让学生动手操作。
苏霍姆林斯基曾说过:“手是意识的培育者,又是智慧的创造着。”操作实践可以让每个孩子既动脑、动眼又动手,调动各种感官参与学习,积累感性认识,深化理性认识。既能够培养学生的操作能力,发展学生的智力,又能培养学生的探索精神和求实的科学态度。在本节课的教学中,让学生思考,讨论,*行四边形的面积可以怎样计算?当学生认为能将*行四边形转化为长方形时,让学生按照自己的设想动手操作使学生的知识,经验智慧充分发挥作用,通过剪拼,然后让学生交流各自的剪拼方法,结果学生想出了三种剪拼的方法,然后引导学生比较转化前后的图形探究出*行四边形的面积计算公式。每个学生通过操作活动,经历知识的“再创造”的过程,获得数学知识,学得主动,让学生在获取知识的过程中获得学习数学的方法,获得探索数学知识的体验,获得多种能力的提高.
五、充分发挥交流的作用。
学生的数学学习过程中,交流是不可或缺的,交流可以帮助学生在非正式的直觉的观念与抽象的数学语言、符号之间建立起联系,交流可以加深学生对数学概念和原理的理解,教学中,我选择适当的时机组织交流,提供具体的情境让学生去表达、倾听,在与他人交流中展示自己的原始策略,了解同伴的学习策略,发展自己的学习策略;在与他人的交流中开阔眼界,丰富自己的知识,完善自己的想法或认识。
《*行四边形面积》教学反思总结2
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《*行四边形的面积》一课的教学中,我通过让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一.注重数学专业思想方法的渗透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆*行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出可以用数方格的方法来求*行四边形的面积。把这两个图形按每个格1*方米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数。”学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有能力的学生向转化的方法靠拢。
二.注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地通过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以*行四边形的面积=底х高。学生掌握了*行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三.分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计了基础练习(算出下面每个*行四边形的面积。);提升练习(量出*行四边形的底和高的长度,并分别算出它们的面积。);
发散练习(下图两个*行四边形的面积相等吗?为什么?在这条*行线之间,还可以画出几种形状不一样而面积相等的*行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。
四.需要改进的地方
本节课的不足之处有:在进行把*行四边形转化为长方形时,书上虽只给出了两种方法,但是实际上有很多不同的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。而且这个环节过后,忘记强调一下,要沿着*行四边形的高剪下,才能*移拼成一个长方形。让学生说的部分还是显得很仓促,自己急于把正确答案给出,这是迫切需要改正的。
教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
《*行四边形面积》教学反思总结3
按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与*淡,现记录如下。
1、准备学习材料,有点小困难。
课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个*行四边行,供学生探究用。
在word上画*行四边形时,遇到了困难。底与高都要取厘米数的*行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2。3厘米。不过这样的学习材料并不影响学生的研究。
2、尝试也出现三种思路。
课始,我开门见山就让孩子们量出*行四边形的相关数据,计算*行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的.思路?或者会不会呈现的`材料不够丰富?……有太多的疑问了。
我的课堂上也出现了三种解决*行四边形的面积的思路。
方法一:求周长。
方法二:底乘邻边;
方法三,底乘高。
讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的*行四边形,长方形面积是长乘宽,所以*行四边形也是长乘宽”。居然与案例呈现的孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把*行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把*行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的*行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把*行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!
3、基本练习。
我采用了两道题,一道只呈现对应底和高的*行四边形,一道有多余邻边的*行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?
4、变式练习。
画面积是12*方厘米的*行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。
5、课尾。
我也采用了朱老师的那三道题,“一个底是8米,高是6分米的*行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?
遗憾与惊喜并存,上课,真有意思!
《*行四边形面积》教学反思3篇(扩展4)
——《*行四边形的面积》教学反思10篇
《*行四边形的面积》教学反思1
本节课是学生在已掌握了长方形面积的计算和*行四边形各部分特征的基础上进行学习*行四边形的面积的计算的,我能根据学生已有的知识水*和认知规律进行教学。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
《*行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)通过学生自主探索、动手实践推导出*行四边形面积计算公式,能正确运用*行四边形的面积计算公式进行相关的计算;(2)让学生经历*行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。培养学生观察、分析、概括、推导和解决实际问题的能力。(3) 使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透,让所积累的经验为新知服务,渗透“转化”思想
在教学设计方面,我先是让学生大胆猜测两个花坛(等底等高的长方形与*行四边形)的面积哪一个大,再让学生通过动手操作、验证*行四边形的面积,其实它们的面积是一样大的。“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想*行四边形的面积可能与谁有关,该怎样计算,接着引出你能将*行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把*行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原*行四边形的面积有什么关系?长方形的长和宽与*行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观, 使学生得出结论:因为长方形的面积=长乘宽,所以*行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了*行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、遗憾之处
课前预设学生把*行四边形转化成长方形的方法有三种,第一种是沿着*行四边形的顶点做的高剪开,通过*移,拼出长方形。第二种是沿着*行四边形中间任意一高剪开,第三种是沿*行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。
本课中我以学生为主体,教师主导,较好地完成了教学目标,但课中有些地方不够完善,需改进。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
《*行四边形的面积》教学反思2
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,然后通过实例验证,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将*行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来*行四边形什么变了,什么没变?拼成长方形的长和宽与原来*行四边形的底和高有什么联系?通过上面问题的思考,学生对*行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个*行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来*行四边形的底,拼成的长方形的宽相当于原来*行四边形的高,*行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以*行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解*行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
第一层:基本练习:书本P82第1题
有利于学生加深对图形的认识,正确分清*行四边形底和高的关系。
第二层:综合练习:
1、你能想办法求出下面两个*行四边形的面积吗?要求这两个*行四边形的面积必须先干什么?
让学生自己动手作高,并量出*行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个*行四边形的面积吗?
通过不同的高引起学生的混淆,在计算中让学生明确在计算*行四边形面积时底要找出与它相对应的高,这样才能准确求出*行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
下面这两个*行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的*行四边形吗?可以画几个?(图在课件中)
学生综合运用知识,进行逻辑推理,明白*行四边形的面积只与底和高有关,等底同高的*行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想:
第一、*移的数学思想。在本节课中没有体现出来。
第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
《*行四边形的面积》教学反思3
本节课的教学目标是使学生在理解的情况下掌握*行四边形面积的计算公式,使学生能够正确的计算*行四边形面积,并通过对图形的.认真观察、比较和自我动手拼拼剪剪等实际操作,来进一步发展学生的想象力,初步建立学生的空间思维能力,通过剪切和*移的动手操作,充分培养学生的分析理解能力、实际操作能力、抽象概括归纳能力和用所学知识解决实际问题的综合能力。
在本节课的教学中,我基本完成了预定的教学目标,取得了较好的教学效果,讲完《*行四边形的面积》这一堂课后,总体感到这节课还是成功的,但深思后也感到这节课还有些不足和遗憾,我就这堂课作如下反思:
在教学中做到了让每个孩子都参与到学习中来,从分发挥了学生的主体作用。本堂课的教学我充分让每个学生主动参与学习,让学生感受到参与到探究学习中的乐趣。首先,通过孙悟空看守蟠桃园的故事导入,让学生大胆猜测:长方形的树地和*行四边形的树地哪块大?然后让他们每个人说明自己的理由,可以用不同的方法来验证自己的观点。我重点讲转换的方法。发给学生图片,让每个学生自己动手剪拼,剪成已经学过的图形。引导学生自愿参与学习全过程,去主动探求知识,达到强化学生主动参与的目的,引导学生采用不同的方法,通过割补、*移把*行四边形转化为长方形,从而找到*行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到*行四边形面积计算公式是底×高,利用小组合作、讨论、交流等方式要求学生把自己总结的过程叙述出来,达到开发学生思维,培养学生的语言表达及归纳总结能力的目的。加强培养学生的空间想象能力,初步建立空间思维,这对于培养学生解决生活中实际问题的能力有着重要的作用。
在学习中能向学生逐步渗透“转化”思想,让原有积累的经验和知识成为学习新知的坚实基础。我在本堂课教学时引导学生采用“转化”的思想,来分散教学中的难点,加深学生对公式的理解和记忆。我通过引导学生大胆猜想*行四边形的面积可能与什么有关,该如何计算,然后引出学生能将*行四边形转化成已学的什么图形进行推导它的面积。让学生能够很自然的想到把这个*行四边形转化成一个长方形,并探究出它们之间存在的内在关系。通过同学间探究出的图形间的关系,使学生初步建立“转化”思维,为以后的几何图形的学习奠定基础,在充分发挥学生空间想象力的同时,也培养了他们的自主创新意识和实际动手操作的能力。这样既能突出本节课的学习重点,又有效地化解了本节课的教学难点,使学生能更好的理解和掌握*行四边形面积的计算。通过本节课的学习,让学生初步掌握图形间的相互转化,为以后在学习过程中推导三角形、梯形面积的计算公式时做了良好的基础铺垫。虽然整个教学过程算是基本合格,但在教学过程仍然存在着一些不足的地方,比如教师在课堂上没有充分发挥学生的自我探究能力和思维拓展能力。课堂上总结时没有放开由学生来归纳概括。还有,由于时间掌控分配不合理,导致学生在提出问题时,没有在课堂上及时解答,这些都是我在今后的教学中需要努力改正的地方。
总之,在今后的教学实际中,我会在课下多学习新的教学模式,积极主动向有经验的教师学习,通过多种方式来提高自己的教学能力,努力改正教学方法,让自己早日成为一名让家长放心、让学生信任,并且自我业务能力过硬的一名合格的好教师。
《*行四边形的面积》教学反思4
《*行四边形的面积》是人教版五年级上册第五单元的学习内容。它是在学生已经学会长方形、正方形的面积计算已掌握*行四边形的特征,会画出*行四边形的底和对应的高的基础上教学。并为下面学习三角形的面积、梯形的面积打下基础。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《*行四边形的面积》一课的教学中,我主要通过找准起点,提出猜想——小组合作,探讨方法,(让学生经历了知识的形成过程)——分层练习,巩固提高,(运用知识解决问题,提高能力)。反思这节课,我有以下几点体会:
一、联系生活情境,激发兴趣
孔子曰:“知之者不如好知者,好知者不如乐知者”,一语道出了兴趣的重要性,引出课题心理学研究表明,人在情绪低落时的思维能力是情绪高涨时的1/2.这足以说明兴趣是学生求知欲的强大动力。本节课伊始我创设了生活情境,通过一组车位图体现生活的变化,让学生产生强烈的幸福感和自豪感,并让孩子在生活中发现数学信息,找到数学问题,通过提出“长方形和*行四边形的车位哪个面积大”问题的比较,学生的学习兴趣被激发出来,课堂气氛一下子活跃起来。学生们在兴趣的引导下,积极投入到学习活动中来,大家在学习过程中猜想,发现,验证,在快乐中学习,在学习中得到了快乐。同时让学生体验数学来源于生活,扎根于生活,应用于生活。
二、重视小组合作,探讨方法
学习任何知识的最佳途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,首先让学生根据已有知识和经验大胆猜测,接着小组合作,亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现*行四边形和长方形之间的关系,最后归纳出*行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。
三、渗透数学方法,发展能力
在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索*行四边形面积的计算方法时,
让学生小组合作,探讨方法。等单数,移数,剪移拼算方法都出现时,我就让学生比较优化,从而得出把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解“转化”思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。
四、注重优化练习,拓展思维
在练习设计中,我主要通过“针对练习——变式练习——拓展练习”三种类型展开,由浅到难,层层深入。有告诉学生底和高,直接求*行四边形面积,有让学生计算自己剪的*行四边形的面积,进一步规范格式,检验学生是否达到运用公式,解决实际问题。有强调底和高应该相对应,同时使学生知道只要知道公式中的任意两个量,就可以求出第三个量,考察学生灵活运用公式求*行四边形的底和高,。最后是认识等底等高
*行四边形的面积相等。先不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确四个*行四边形同底,根据*行线间的距离处处相等,它们的高也相等。所以学生在解决这些问题时,激起了兴趣,迸出了不同的思维火花,体现出了不同层次的思维方式,让每一个学生都有了不同层次的提高。
当然,在本课的教学中,我还有很多不足,如:对学生的评价语言不够及时和丰富;在学生的想法和自己预设不相符合时,自己的随机应变能力不够,没有作出及时的调整┅┅总之,要上好课,我们教师用学生的眼光理解教材,用科学的理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。
《*行四边形的面积》教学反思5
在教学设计时,我创设一个把长方形变成*行四边形,猜测面积是否变化的情境,激发学生的探究欲望。学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数*行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”本节课的教学重点为“探究*行四边形的面积公式”,难点设立为“理解*等四边形的面积计算公式的推导过程”。为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的*行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说*行四边形面积公式的推导过程。这样让学生亲身经历操作过程,在交流演示中理解掌握了*行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。这样不仅让学生学到知识,更重要的是对学生渗透了*移和转化的数学思想方法,培养了学生观察、分析、概括和能力。
我认为本节课的不足之处是:
(1)在学生把*行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法,局限了学生的思维。应让学生充分展示,从而明确不同的割补方法,其结果是一样的。三种剪法。
(2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。
(3)对知识的巩固运用做的不够。本打算在基本练习之后,让学生探究把长方形框架拉成*行四边形后什么变了,什么没变,以此拓展学生的能力。但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。
《*行四边形的面积》教学反思6
《*行四边形的面积》是人教版五年级上册第五单元的学习内容。它是在学生已经学会长方形、正方形的面积计算已掌握*行四边形的特征,会画出*行四边形的底和对应的高的基础上教学。并为下面学习三角形的面积、梯形的面积打下基础。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《*行四边形的面积》一课的教学中,我主要通过找准起点,提出猜想——小组合作,探讨方法,(让学生经历了知识的形成过程)——分层练习,巩固提高,(运用知识解决问题,提高能力)。反思这节课,我有以下几点体会:
一、联系生活情境,激发兴趣
孔子曰:“知之者不如好知者,好知者不如乐知者”,一语道出了兴趣的重要性,引出课题心理学研究表明,人在情绪低落时的思维能力是情绪高涨时的1/2.这足以说明兴趣是学生求知欲的强大动力。本节课伊始我创设了生活情境,通过一组车位图体现生活的变化,让学生产生强烈的幸福感和自豪感,并让孩子在生活中发现数学信息,找到数学问题,通过提出“长方形和*行四边形的车位哪个面积大”问题的比较,学生的学习兴趣被激发出来,课堂气氛一下子活跃起来。学生们在兴趣的引导下,积极投入到学习活动中来,大家在学习过程中猜想,发现,验证,在快乐中学习,在学习中得到了快乐。同时让学生体验数学来源于生活,扎根于生活,应用于生活。
二、重视小组合作,探讨方法
学习任何知识的最佳途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,首先让学生根据已有知识和经验大胆猜测,接着小组合作,亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现*行四边形和长方形之间的关系,最后归纳出*行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。
三、渗透数学方法,发展能力
在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索*行四边形面积的计算方法时,让学生小组合作,探讨方法。等单数,移数,剪移拼算方法都出现时,我就让学生比较优化,从而得出把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解“转化”思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。
四、注重优化练习,拓展思维
在练习设计中,我主要通过“针对练习——变式练习——拓展练习”三种类型展开,由浅到难,层层深入。有告诉学生底和高,直接求*行四边形面积,有让学生计算自己剪的*行四边形的面积,进一步规范格式,检验学生是否达到运用公式,解决实际问题。有强调底和高应该相对应,同时使学生知道只要知道公式中的任意两个量,就可以求出第三个量,考察学生灵活运用公式求*行四边形的底和高,最后是认识等底等高*行四边形的面积相等。先不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确四个*行四边形同底,根据*行线间的距离处处相等,它们的高也相等。所以学生在解决这些问题时,激起了兴趣,迸出了不同的思维火花,体现出了不同层次的思维方式,让每一个学生都有了不同层次的提高。
当然,在本课的教学中,我还有很多不足,如:对学生的评价语言不够及时和丰富;在学生的想法和自己预设不相符合时,自己的随机应变能力不够,没有作出及时的调整……总之,要上好课,我们教师用学生的眼光理解教材,用科学的理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。
《*行四边形的面积》教学反思7
本节课的教学内容属于公式推导课。教学重点是推导出*行四边形的面积计算公式,并能正确运用。教学难点是把*行四边形转化成学过的图形,通过找关系推导出*行四边形的面积公式。课前我一直在思考,如何用新课程的理念去教这一内容呢?于是我对这节课进行了大胆的尝试。整个推导过程较为抽象,学生掌握起来有相当的难度,所以根据学生的认知规律,本节课充分发挥学生的主动性,在教师的引导下,让每一个学生亲自动手操作,把*行四边形转化为长方形,通过观察、比较、分析、概括、讨论的方法,自己去发现*行四边形与长方形之间的关系,然后一步步地推导出*行四边形面积的计算公式。现针对实际课堂教学效果进行自我反思。
一、注重学法的指导,将转化的思想进行了有效的渗透,让学生学会用学过的知识来解决现有的问题。
新授课中,找准知识的生长点是很重要的。长方形面积的计算是*行四边形面积计算的生长点,是认知前提。因此,开始伊始,先复习长方形面积的计算方法,让学生实现知识的迁移,为推导*行四边形的面积计算公式作铺垫。在比较长方形和*行四边形两个图形的大小这一教学环节中,学生用了数方格的方法去比较它们面积的大小。学生上台汇报时充分利用电脑演示,突出怎样去数方格(先数满格,不满一格的按半格计算,两个半格算一格)为以后学习不规则图形面积埋下伏笔。然后放手让学生将自己准备的*行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有了非常直观的“转化”感受。将*行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经会算面积的图形来研究。我们可以将数学方法传递给学生,而数学眼光却无法传递,故应着重把握好对数学思想的教学,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
二、让孩子亲身体验,增长自身的经验,体现学生的主体性
学生是数学学习的主人,在教学中给学生提供了充分的从事数学活动的机会,先让学生大胆猜测,再通过同桌合作剪一剪,拼一拼,互相交流总结,验证猜想。学生在自主探索、动手操作、合作交流的过程中真正理解和掌握了基本的数学知识与技能,数学思想和方法,学生的主体性得以体现。推导出*行四边形的面积计算公式,完成了本节课的知识目标教学。
三、注重学生数学思维的发展和学习水*的深化
通过有梯度的练习设计,提高学生对*行四边形面积计算的掌握水*。以开放练习的形式,出示①课件出示*行四边形,使学生关注这个*行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对*行四边形的面积计算的认识也会更深。本课的教学中*行四边形底和高对应关系的寻找是很重要的一个环节,这就为日后学习三角形、梯形等*面图形的面积计算奠定了基础。②讨论:下列两个*行四边形的面积大小相等吗?通过讨论、交流,使学生明白等底等高的*行四边形的面积相等。③讨论:将一个长方形框架拉成一个*行四边形,什么变了?什么没变?为什么?通过这些练习进一步丰富了学生的认识,拓宽了学生的思维,有效的提高了课堂教学的效率。
四、增强自身的应变能力
有效的把握学生课堂生成,灵活应对课堂突发的情况,是我今后教学中应注重的。在课堂教学中,教师的应变能力十分重要,它对提高教学效果和完成教学任务具有重要的意义。如果教师具有较好的应变能力,在教学过程中就能从容不迫,随机应变组织教学,即使课堂上出现意想不到的问题,也能临危不乱,坦然处之,妥善地加于解决。如果缺乏一定的应变能力,一旦课堂上出现意想不到的问题,就会乱了方寸,必然影响教学效果,完成不了教学任务。因此,作为教师要具备一定的应变能力,上课的时候就能灵活变通,这样我们的课堂教学就一定会很精彩。
《*行四边形的面积》教学反思8
本节课内容是在学生已经学会长方形、正方形的面积计算的基础上掌握*行四边形的特征,并认识*行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水*和认知规律进行教学。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学思想。
一、渗透“转化”思想,引导探究
通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。“转化”是数学学习和研究的一种重要思想方法。
我在教学本节课时采用了“转化”的思想,先通过数方格求面积发现数方格对于大面积的*行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想*行四边形的面积可能与谁有关,该怎样计算,接着引出你能将*行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把*行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到*行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
二、重视操作试验,发展能力
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把*行四边形转化为长方形,从而找到*行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到*行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。
这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求*行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。
第二题出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。
第三题考察学生灵活运用公式求*行四边形的底和高。
第四题认识等底等高的*行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个*行四边形共底,根据*行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
《*行四边形的面积》教学反思9
按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与*淡,现记录如下。
1、准备学习材料,有点小困难。
课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个*行四边行,供学生探究用。
在word上画*行四边形时,遇到了困难。底与高都要取厘米数的*行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2。3厘米。不过这样的学习材料并不影响学生的研究。
2、尝试也出现三种思路。
课始,我开门见山就让孩子们量出*行四边形的相关数据,计算*行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的思路?或者会不会呈现的材料不够丰富?……有太多的疑问了。
我的课堂上也出现了三种解决*行四边形的面积的思路。
方法一:求周长。
方法二:底乘邻边;
方法三,底乘高。
讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的*行四边形,长方形面积是长乘宽,所以*行四边形也是长乘宽”。居然与案例呈现的孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把*行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把*行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的*行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把*行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!
3、基本练习。
我采用了两道题,一道只呈现对应底和高的*行四边形,一道有多余邻边的*行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?
4、变式练习。
画面积是12*方厘米的*行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。
5、课尾。
我也采用了朱老师的那三道题,“一个底是8米,高是6分米的*行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?
遗憾与惊喜并存,上课,真有意思!
《*行四边形的面积》教学反思10
本节课内容在学生学习了长方形、正方形、*行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
成功之处:
1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是*行四边形的面积学生没有学过,如何求*行四边形的面积呢?通过这样的疑问,引领学生探索*行四边形的面积计算公式。
2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和*行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,*行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的*行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到*行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
不足之处:
学生虽然能够推导出*行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
再教设计:
加强学生的语言表述能力,做到规范、严谨。
《*行四边形面积》教学反思3篇(扩展5)
——*行四边形的面积说课稿5篇
*行四边形的面积说课稿1
一、说教材
《*行四边形的面积》是小学数学五年级上册第五单元的内容。它是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式奠定良好的基础。因此这节课的内容在整个教材体系中起到了承上启下的作用。
二、说学生
本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解*面图形之间的变换关系,发展空间观念。
三、说教学目标及重难点
根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我确立如下三维教学目标:
1、知识目标:掌握*行四边形面积的计算公式,能正确计算*行四边形的面积。
2、能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
教学重点:能应用公式计算*行四边形的面积。
教学难点:理解*行四边形面积的推导过程,并能运用公式解决实际问题。
四、说教学方法
本节课,我将采用“自主探究、合作交流”的教学方式。通过创设情境,课件演示和实践操作,了解求*行四边形的面积与什么有关系,再让学生通过动手剪拼,推导出*行四边形的面积计算公式,直观突破了难点。这样大大激发了学生参与学习的积极性。与此同时,我还组织学生认真操作、观察、分析和讨论,来解决生活中的实际问题。
五、说教具与学具准备
教具:多媒体课件、*行四边形纸、剪刀、三角板。
学具:学生每人一个任意大小的*行四边形纸片剪刀
六、说教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,我把教学过程分为以下五个教学环节:
第一环节:创设情境、激趣导入。
通过创设情境:小兔乐乐想从两块草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,同学们能帮助小兔解决吗?接着引导学生看图一是什么图形?该如何计算它的面积呢?学生一边集体回答一边(板书长方形的面积计算公式)然后提问图二是什么图形?该怎么求它的面积呢?学生利用以前的知识不能计算出*行四边形草地的面积。从而激发了学生积极探求知识奥秘的欲望,使课堂教学充满活力。
第二环节:动手实践,多维探究。
1.我首先提出“怎样比较长方形草地和*行四边形草地的面积的大小呢?”这个问题引发学生小组讨论。小组学习中,学生不受任何束缚,开动脑筋,各自想尽一切办法,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作、探究的精神。汇报交流时,找准切入点,突破难点。利用从小组汇报中得来的信息,引导学生确定办法的可行性。学生想出了很多办法,如:数方格法、重叠卡片对比法、剪割拼补法等等。不论哪一种方法都是宝贵的,因为,这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。引导学生分析、验证是发展学生思维的重要方法。所以,在学生汇报出多种答案时,我组织学生分组实践各种办法,并要求说明实践过程,要合情合理,学生在认真、细致的操作中认识到长方形与*行四边形之间的联系。
2.其次(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:长方形的长和*行四边形的底相等,长方形的宽和*行四边形的高相等,并得出两个图形面积相同的答案。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导*行四边面积计算公式做好充分的准备。
第三环节:抓住重点环节,深入推导梳理
(1)实验操作
学生小组合作动手操作把*行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会*移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究*行四边形的面积公式积累了感性经验,同时也培养了学生的协作精神。
(2)合作探究
通过感性经验的积累和实践的结果,讨论:
a、是不是任何一个*行四边形都能剪拼成长方形?*行四边形转化成长方形后它的面积有没有变化?
b、拼成长方形的长与原来*行四边形的底有什么关系?
c、拼成长方形的宽与原来*行四边形的高有什么关系?
小组通过讨论达成共识,推导出*行四边形面积公式。
(课件展示板书)*行四边形的面积=底×高
然后指出:如果*行四边形的面积用S表示,底用a表示,高用h表示,那么*行四边形的计算公式还可以写成什么形式,让学生抢答,教师板书,这样又提高了学生用字母表示公式的能力。
小结:整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出*行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。
*行四边形的面积说课稿2
一、说教材:
1、教材的地位与作用
*行四边行面积的计算是苏教版第九册第二单元第一节。这节课的内容是在初步掌握长方形的面积计算及*行四边的基本特征的基础上进行教学的。*行四边的面积是以长方形的面积计算为基础的,把*行四边转化为长方形来计算面积。通过操作、观察、比较、使学生理解,并在此基础上掌握*行四边的面积的计算公式,并能正确计算*行四边的面积。这样可以发展学生的空间观念,渗透事物间相互联系、相互转化的辨证观念,培养学生的演绎推理,逻辑思维及解决问题的能力。同时为以后学习三角形、梯形、组合图形的面积计算打下基础。
2、教学目标
(1)知识目标:使学生在理解的基础上掌握*行四边的面积计算公式,能正确地计算*行四边行的面积。
(2)能力目标:通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究*行四边时的应用,培养学生的分析、综合、抽象和运用转化的方法解决实际问题的能力。
(3)德育目标:渗透事物间是相互联系的和实践第一的辨证唯物主义思想,培养爱科学、学科学、用科学,加强学生动手操作能力。
(4)情感和态度:经历猜测,实验验证,作出结论的过程,增强肯于动脑又实事求是的科学精神。
3、教学重点与难点
因为计算物体的面积在曰常生活和生产中有着十分广泛的应用,所以本节的重点是*行四边形面积计算公式的推导过程,以及学生能正确熟练地计算*行四边形的面积。教学的难点是如何运用迁移的思想把*行四边形转化成长方形。
二、说教法:
根据教材以及四年级学生的特点,我在教学中采用以下教学方法:
(1)直观演示法:通过多媒体课件演示,使学生对所学知识获得丰富的感性认识,有利于激发学生的学习兴趣,集中注意力,培养和发展学生的观察能力。
(2)情境教学法:让每个学生都亲自动手制作、演示*行四边形转化成长方形的过程,创设良好的课堂氛围,使学生积极参与到教学活动中,调动学生的学习积极性,变“要我学”为“我要学”。
(3)实践探究法:引导学生运用转化的方法,启发学生主动探索规律。
(4)渗透迁移的思想,把新知转化成旧知解决。
三、说学法:
“教,是为了不教”,在课堂教学中,我们应重视学生学习的过程,加强学生动手操作,手脑并用;引导学生运用转化的方法,启发学生探索规律;注重对公式产生的全过程进行探求;让学生在提出猜想、验证猜想、应用猜想等一环扣一环的情境中,学会观察,学会表述,学会思维。
教学过程:
(一)形象导入,唤起感知
课件显示(方格纸上的*行四边形) 方格纸上画的是什么图形?其有哪些特征?谁能利用三角板作出*行四边形的高?让学生在自己准备的*行四边形上作高,并强调直角三角板的一条边与底边重合,另一条通过顶点向底边作垂线。为新课的教学作好准备。
(二)实验操作,引导探究
1:观察数格,提出猜想
课件显示(P42的图形)谁能利用以前学过的方法计算*行四边形的面积?强调*行四边形在方格纸上不满格的,该怎么数?通过剪拼,渗透转化的思想,为后面把*行四边形转化为长方形或正方形作铺垫。那么谁来数一数长方形的面积,并比较长方形的长与*行四边形的底,长方形的宽与*行四边形的高,启发学生说出底和长,高和宽分别相等,两者的面积也相等。如果不用数格,如果*行四边形的面积很大你能有更好的方法求出*行四边形的面积呢?(提出猜想)
2:实验操作,验证猜想
在实际的生活中并不是所有的*行四边形都能用数格得到的,因此我们利用转化的思想,通过学生的操作、探索,把*行四边形转化为已学过的长方形,从而把计算*行四边形的面积转化为计算长方形的面积。
让学生拿出准备好的*行四边形进行剪拼:
(1)先沿着*行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(4)让学生把自已沿着高剪下的直角三角形按以上步骤把*行四边形转化成长方形。
3:观察比较,推导公式
课件显示(*行四边形转化成长方形的过程)并在让学生在剪拼成的长方形边上放一个原来的*行四边形,引导学生结合自已转化的图形仔细观察、比较。
(1)这个由*行四边形转化成的长方形面积与原来的*行四边形的面积比较,有没有变化?为什么?
(2)这个长方形的长与*行四边形的底有什么样的关系?高有什么样的关系?
(3)这个长方形的面积怎样求?转化的*行四边形的面积怎样求?
(4)让学生明确:任意一个*行四边形都可以转化为一个长方形,它的面积和原来的*行四边形的面积相等,它的长、宽分别和原来的*行四边形的底、高相等。
沟通关系 因为 长方形的面积=长×宽
所以 *行四边形的面积=底×高
(以上的过程,遵循了学生的认知规律,按“提出猜想(设疑激趣)——验证猜想(转化探索)——推导公式(分析应用)的过程,遵循了直观——抽象——应用的教学原则,充分展示教师的主导作用和学生的主体作用,使学生主动参与,探索尝试,激发了其学习的积极性。)
(5)教学用字母表示*行四边形的面积公式
教师板书:s=a×h,告知s和h读音,并说明在含有字母的式子里,字母和字母中间乘号可以记作“· ”,写成a·h,也可以省略不写,所以*行四边形面积的计算公式可以写成s=a·h或s=ah
(三)、运用公式,解决问题
练习题的 设计由浅入深,循序渐进。
1、教学课本第44页例题。
指导读题后,引导学生思考:根据什么立式?得数应注意什么?然后让学生独立列式计算,教师巡回指导,集体订正时指名说出是根据什么列式的。
2、完成第44页做一做的题目
学生独立练习,教师巡视指导,共同订正。
完成本节课教学内容后,让学生看书,质疑问难,及时解决问题,巩固所学知识。
3、多层练习,内化新知。
为了适应面向全体学生和因材施教的需要,这节课设计了三个层次的练习。
(1)基础练习。完成练习九的第1、2、3题。(第1题,巩固新学的面积计算公式,三题底与高数值不同,图形中高的.位置各不相同,让学生明确底与高必须一一对应。第3题,要求学生会根据底来找高,或根据高来找底,并能正确作高,与引入复习相互应,使整堂课前后呼应,连贯一致)
(2)联系实际,补充练习。
(3)动手操作,发展练习:练习十七的第10题。
(这样的练习,可以让学生发散思维,培养学生的操作能力和创造能力,同时渗透变与不变、联系与发展的辩证思想。这样,针对性强,形式多样,难度适中的阶梯练习,使学生的学习由“理解”上升为“掌握”,难度适中的阶梯练习)
(四)归纳整理,全课总结。
教师启发学生归纳总结本课学习的内容,目的是强化重点,形成认知结构。
*行四边形的面积说课稿3
一、教材分析。
本节课是小学数学五年级上册第五单元“多边形的面积”的第一课时,它是在学生掌握了*行四边形的特征以及长方形、正方形面积计算的基础上进行的,是进一步学习三角形面积、梯形面积等知识的基础。教材利用主题图引入本单元的教学,先用数方格方法计算图形的面积,再通过割补实验,把一个*行四边形转化为一个与它面积相等的长方形,推导出新的图形面积计算公式,使学生明确面积计算公式的意义。这样的编排,注重从生活场景导入,突出了数学的价值,整个教材很适合自学。
二、学情分析:
虽说学生已经掌握了*行四边形的特征和长方形面积的计算方法,也已经有了“利用数方格推导长方形面积计算方法”的这一活动经验。可我发现:很多的同学已经淡忘了“数方格求面积”的这种方法。再加上小学生的空间想象力不够丰富,这都对*行四边形面积计算公式的推导造成一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、教学目标预设:
结合本节课所学知识特点和学生的思维特点现拟定如下目标:
1.使学生经历探索*行四边形面积计算公式的推导过程,掌握*行四边形的面积计算方法,能应用*行四边形的面积公式解决相应的实际问题。
2.培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3.培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
4.使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
四、教学重点、难点剖析:
通过猜测DD验证来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成*行四边形。
教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:*行四边形面积公式的推导方法—转化思想渗透。
五、说教法、学法
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
学法上坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
六、教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:
(一)巧设情境,铺垫导入
教师出示长方形框架,对长方形的知识进行复习。主要就是长方形的周长和面积,为本节课的学习做好铺垫。这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的? 复习后,把这个长方形的一组对角,向外这样拉,就变成了*行四边形。简单的操作背后有思考:这样一拉,形状变了,面积变了吗?
让学生质疑面积的变化,并进行大胆的猜测——你认为*行四边形的面积是怎样计算的?学生可能会猜测变形后它的面积没有变——*行四边形的面积等于相邻两条边的乘积。或者是已经改变了,那么是什么?
究竟学生这个猜想是否正确,下面我们一齐来验证一下就知道了。在这里渗透了数学很重要的一个思想,就是猜测——验证的过程。在这里我设计了两个环节来进行验证。
一种是请同学们用数方格的方法来算出这个*行四边形的面积,师把拉成的*行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。通过学生数一数,得出这个*行四边形的面积是32cm2,使学生明确拉成的*行四边形面积变少了,相邻两条边的乘积不能算出*行四边形的面积。拉成*行四边形的面积变小了。
看起来,用相邻的两条边相乘不能算出*行四边形的面积,那么,*行四边形的面积应该怎样计算呢?进入我们这节课的主题:就让我们一起来探讨*行四边形的面积计算吧。
(二)合作探索,迁移创造
探究*行四边形的面积公式是这节课的第二个验证过程。也是这节课的重难点所在。学生经历活动过程:
图形转换
一个*行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?可以转换成什么图形?让学生实践操作,同桌两人合作,想办法把*行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,想出各种方法将*行四边形转化成长方形。在学生动手操作的过程中,可能有很多种剪拼方法,教师指导学生用最简单的方法进行剪拼,并把有代表性的作品张贴在黑板上。然后学生来展示他们的剪拼过程。汇报这样拼剪的原因。讲解过程中可提问:你怎么证明你剪切并*移成的图形就是长方形呢?从“高”剪起,剪下的部分向右*移,就组拼成长方形。
在这里让学生通过动手操作拓展了学生思维的空间,这样不仅强化*移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。在这里教师可以用课件再演示一遍三种不同的转化过程。让学生更加明确转化思想。
*行四边形的面积说课稿4
一、说教材
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
(一)教学目标:根据新课标要求及教材特点,充分考虑五年级学生思维水*,确立如下目标:
知识与能力:通过自主探索、动手实践推导出*行四边形面积计算公式,能正确求*行四边形的面积。
过程与方法:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养分析、综合、抽象、概括的能力。
情感态度价值观:感受数学与生活的联系,感受到数学知识的应用价值和探究知识的乐趣。
(二)教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:通过转化,发现长方形和*行四边形之间的联系,从而推导出*行四边形面积计算公式。
关键点:通过实践—理论—实践来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。
(三)教具、学具准备:多媒体课件
剪刀、4种不同的*行四边形、彩笔。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。
二、学生分析:学生已经掌握了*行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、设计理念:《数学课程标准》指出:“由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”而《小学生个性与特长发展实验研究》这一课题旨在通过课堂教学这一主渠道激发学生的学习兴趣,张扬学生的个性,形成爱好,(转自数学 吧 )使学生掌握学习策略,并最终能够发展特长。因此,整节课我始终坚持构建和谐的课堂,注重营造民主和谐的教学气氛,尊重学生的真实想法,关注学生真实的思维世界,整个教学过程师生在*等、民主、和谐中进行真诚的“对话”和“互动”,形成了思想与情感的真正交流,做到了“以人为本”,这样师生彼此形成了一个学习共同体,整个教学过程变成了一种动态的、生动的、发展的富有个性化的创造过程。另外,《数学课程标准》中提出“自主探索”是重要的学习方式,因此我在本节课的设计中,是先让学生明确*行四边形的面积为什么与底和高有关系,再让学生明确到底有什么关系,这样,是在学生自己思维指向性基础上的探索,也就是让学生明确了“我要探索什么,我为什么探索”,避免了人为地提供探索的方向,真正经历了知识形成的过程。这样,学生的自主探索既有利于教学的合理进展,又有利于学生对知识的真正获得,同时还有利于学生思维的发展和创新精神的培养,做到了有效的探索。
四、说教法、学法
教法:
1、发展迁移原则:运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2、学生为主体,教师为主导的教学原则:针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
3、反馈教学法:为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与*行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
学法:学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
五、说教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
整个教学过程大致是这样一个教学流程:
1)通过“你发了哪些图形?你会计算它们的面积吗?”问题,巩固和加深了对已学过的图形的认识。再由解决“两个花坛哪个大?”这个实际的问题,让学生感受到学习数学知识的应用价值。
2)初步感知用数一数的方法求*行四边形的面积的局限性,从而激起学生进一步寻求简单方法求*行四边形的面积。
3)引导学生观察表中的数据,说说你发现了什么?由此你猜想到了什么?让学生大胆猜想。通过细心地观察、交流明确*行四边形的面积=底×高。然后再探索验证:*行四边形的面积=底×高,学生经历着比较、分析、动手操作、观察、合作、交流等一系列数学活动,体验着知识的形成过程,进而推导出*行四边形的面积计算公式,使学生在学会数学知识的同时,理解和经历了“转化”的数学思想方法。
4)进行综合性的练习,使学生体会“学以致用”。
5)最后让学生谈谈在本节课对自己最满意的地方,学生畅所欲言,在轻松愉快的氛围中结束本课。
(一)创设情景,揭示课题
1、比较两个图形的面积。让学生猜一猜。
2、想办法比较两个图形的面积。
3、长方形的面积会计算,*行四边形的面积怎样算。揭示课题。
(二)动手实践,探究归纳
1、尝试把*行四边形剪、拼成长方形
2、学生展示、交流
3、对比、总结、提炼
(三)分层训练,理解内化:本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题。
(四)总结评价,升华提高
师生共谈本节课的收获,引导孩子用转化的方法尝试解决三角形、梯形的面积
*行四边形的面积说课稿5
今天我说课的内容是人教版数学五年级上册第五单元《*行四边形的面积》。下面我将从教材、学情、教学目标、教法学法、教学过程和评价六个方面进行说课。
一、说教材
几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。而本课是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,在理解的基础上掌握公式。同时也为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节,更是承上启下的重要章节。
二、说学情
新课改下成长起来的五年级学生,善于独立思考,乐于合作交流,有较好的学习数学的能力。再加上他们已经掌握了*行四边形的特征和长方形面积的计算方法,这些都为本节课的学习奠定了坚实的基础。但是,让学生切实理解长方形与*行四边形之间的联系是一个难点,需要他们在探索活动中,循序渐进、由浅入深地进行操作与观察,从而进一步理解*面图形之间的变换关系,发展空间观念。
三、说教学目标
根据新课标的要求,基于对教材与学情的分析,我确定了如下教学目标:
1.知识与技能目标:使学生在理解的基础上掌握*行四边形面积的计算公式,能正确计算*行四边形面积。
2.过程与方法目标:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化和*移的思想,培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
3.情感、态度与价值观目标:通过活动,激发学生的学习兴趣,使之感受到数学知识的应用价值和探究知识的乐趣,感受数学与生活的密切联系。
教学重点:*行四边形面积计算公式的推导及运用。
教学难点:通过转化,发现长方形和*行四边形之间的联系,推导出*行四边形的面积计算公式。
四、说教法、学法
1.教法:依据新课标,结合教材的编排意图与学情状况,针对小学生以形象思维为主的特点,我主要采用情境教学法、实际操作法、观察比较法和引导探究法等等,组织学生开展丰富多彩的数学活动,以激发他们的学习兴趣,调动他们的学习积极性,为他们创建一个发现、探索的思维空间,使他们能更好地去发现、去创造。
2.学法:“授人以鱼,不如授人以渔”。在教学中,我鼓励学生自主探究、合作实践,组织学生认真观察、分析讨论,引导学生通过观察、比较、操作、概括等行为来解决问题。
五、说教学设计
为了能更好地凸显素质教育课堂教学观,高效的完成教学任务,结合教材与学生的特点,我设计了如下环节:
(一)导入
为了让学生体会到数学的神奇,在新课伊始,我根据学生的兴趣特征设计了这样一个活动:(出示长方形的模型)把它拉伸会变成一个什么图形?你能画出它的高吗?你能计算出此图形的面积吗?通过这样的活动,在帮助学生巩固知识的同时,也制造出了以学生现有的知识水*无法解决的麻烦,从而激发了学生积极探求知识奥秘的欲望,更是水到渠成的导入了新课:(板书)*行四边形的面积。
(二)习新
“学起于思,思源于疑。”正是因为导入中制造的麻烦,让学生们有了探求的欲望。于是,我顺水推舟的设计了这样一个探究活动:在钉子板上用橡皮筋围了两个图形:一个长方形,一个*行四边形(面积与长方形一样大)。然后出示设计的问题:
1. 请测量长方形的长和宽,*行四边形的边长和高。
2. 请计算出长方形的面积。
3. 你猜测*行四边形的面积该如何计算?
带着这几个问题,开始小组合作探究。虽然探究可能会出现*行四边形的面积=边长×边长这样的结果,但是学生们学习的主动性得到了的发挥,学生的个性得到了彰显,能让他们体会到探究的乐趣。
在学生们展示完自己的结论后,我先不评价其结论的对与错,而是出示第四个问题:
4.请用数方格的方法验证自己的结论。(不满一格的都按半格计算。)
这样,就促使学生们迫不及待的去验证自己的结论,从而达到为下一步推导*行四边形面积计算公式做好准备的目的。
通过上面的探究活动,让学生们归纳出对这两个图形的认识:两个图形面积相等,长方形的长和*行四边形的底相等,宽和高也相等。虽然他们能认识到这些,但这三个结论之间并没有在他们的思维中产生联系,而这个联系正是本节课的重难点。为了突破这个难点,于是我又设计一个活动:出示一个*行四边形。
1.请画出它的高,测量它的底和高的长度。
2.沿着它的一条高裁剪,将会剪出两个什么样的图形?
3.你能否把这两个图形拼成一个我们熟悉的图形?
4.观察拼出的长方形和原来的*行四边形,你发现了什么?
(长方形的长和*行四边形的底相等,宽和高相等,面积也相等)
5.你能总结出*行四边形的面积计算公式吗?
通过这一系列的问题,引导学生们去交流讨论、合作探究、实验验证。这样既锻炼了学生的动手能力,也发展了学生的空间概念,同时也培养了学生的协作精神,更渗透了转化与*移的思想。
在学生归纳总结出*行四边形的面积=底×高,即S=ah之后,我又让学生们独立学习课本上的例1,再回过去解决导入中的问题,以此加深对面积计算公式的理解。
(三)巩固
理解了*行四边形的面积计算公式之后,我及时组织学生巩固运用。安排这样几道练习题:
1.画出下列*行四边形的高。
2.量出*行四边形的底与高的长度,并计算其面积。
学生们独立思考,完成练习,使其进一步理解了公式的运用,真正达到了学以致用的目的。
(四)拓展
巩固新知后,我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:
1. 这个*行四边形的高是多少?(P82/3)
2. 出示导入中可活动的长方形框架,任意拉这个框架,形成*行四边形,你知道它们的周长和面积有什么变化?什么情况下它的面积最大?
学生独立完成第一题,合作探究第二题,从而达到拓展视野,加深理解的作用。整个习题的设计,虽然题量不多,但涵盖了本节课所学的知识点。同时练习题的设计遵循由易到难的原则,层层深入,有效的培养了学生创新意识和解决问题的能力,同时也激发了学生的兴趣、引发了思考、发展了思维。
六、说评价
整节课我始终坚持把对学生学习过程的评价,贯穿于整个教学过程之中:对他们发现问题和解决问题的能力,通过展示来实现;对知识的理解和掌握,通过双向反馈来落实。
总之,本节课我贯穿新课改的理念,坚持以教师为主导,学生为主体,让学生经历“发现问题-解决问题-归纳总结-构建模型”的学习过程,让他们都参与到活动中来,真正实现面向全体。
《*行四边形面积》教学反思3篇(扩展6)
——《*行四边形》教学设计3篇
《*行四边形》教学设计1
教学目标:
1、使学生初步认识*行四边形,初步体会*行四边形的对边*行且相等的特征。
2、理解*行四边形的底和高,并能正确画出底对应的高。
3、通过直观演示,个体操作,集体交流,帮助学生掌握*行边形的特性:易变形。
4、积极引导学生参与学习,帮助学生建立初步的空间观念和逻辑观念。教学重点:认识*行四边形,初步体会*行四边形的对边*行且相等的特征。
教学难点:
理解*行四边形的底和高,并能正确画出底对应的高。学具准备:每人一张*行四边形卡片,每人一张练习纸,三角尺。教具准备:多媒体课件,*行四边形卡片、*行四边形的框架。
一、创设情境,揭示主题。
1、游戏导入
回顾旧知:同学们学过哪些几何图形?
回顾长方形、正方形等图形做游戏—芝麻开门猜测门后面是什么图形?揭示课题:像这样的图形是*行四边形。
师:这节课老师将和同学们一起来认识*行四边形。(板书课题)2、感受生活中的*行四边形
设计意图:把*行四边形与其他图形的联系中揭示,让学生在游戏中学习,初步了解要研究的问题,达到回顾旧知、引出新知的良好效果。更重要的是在这个过程中学生体会到先进的思维方式——迁移。
二、探究新知
(一)认识*行四边形
1、观察表象
明确*行四边形的对边、邻边。
2、动手操作,感悟特征。独立研究老师准备的*行四边形卡片,测一测,量一量,研究*行四边形的特点。
3、交流汇报,描述特征。
每4人一组,说说发现了什么以及怎么发现的。
师:仔细观察这个*行四边形,说一说,它有哪些特征?思考:用什么办法知道*行四边形的对边相等?
师:电脑展示,通过*移验证*行四边形对边*行且相等。
4、初步运用
下面哪个图形是*行四边形?
设计意图:利用新旧知识之间的联系,从知识的逻辑顺序和大数学观的背景中引导学生初步发现*行四边形和已学的长方形之间的联系,抓住问题的关键,让每一位学生通过推拉长方形框,既动手又动脑,充分发挥学生的主动性,感悟*行四边形的特性,从而发现*行四边形与长方形的联系,培养了学生的合情推理能力。
(二)认识*行四边形的底和高
1.观察表象
师出示两个不同的*行四边形,比较哪个更高。学生说说什么是*行四边形的高。
2、出示概念
通过多媒体边演示,教师边解释什么是*行四边形的底和高:从*行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做*行四边形的高,垂足所在的边叫做*行四边形的底。
师:你在*行四边形上画几条高呢?你能分析一下*行四边形为什么可以画无数条高吗?
3、研究画法
师演示*行四边形的高的画法,指出哪个是底哪个是高。学生在学习纸上练习画高,投影展示。
(三)*行四边形的特性
师推拉长方形框让学生直观感受长方形框变成*行四边形框的过程。介绍*行四边形易变形特性以及在生活中的应用。
三、练习巩固,深化认识自我挑战
1判断
1)对边*行的四边形叫做*行四边形。()
2)把一个长方形框架拉成一个*行四边形后,周长变大了。()
3)长方形是特殊的*行四边形。()
2数一数图*有()个*行四边形?
A、 2 B、 3 C 、 4 D
3判断下面的红色线段是*行四边形的高吗?
四、小结收获。
想一想,你今天由什么收获?
五、板书设计
*行四边形
两组对边分别*行的四边形叫做*行四边形。
《*行四边形》教学设计2
一、教学目标:
1、结合生活情景,经历从实际物体中抽象出*行四边形的过程,直观认识*行四边形,初步发展空间观念。
2、在观察与比较中,使学生了解*行四边形与长方形的联系与区别。
3、通过观察生活中的*行四边形,体会*行四边形与生活的密切联系。
二、教学重点:
认识*行四边形。
三、教学难点:
在方格纸或点子图上画出*行四边形。
四、教学准备与学具:
教学准备:PPT、活动长方形框架。
学具:七巧板。
五、教学过程:
(一)创设活动情境。
师:同学们,看!老师手里拿的是什么图形呀?
生:长方形。
师:你还记得长方形有哪些特点吗?
生:长方形有4条边,对边相等。长方形4个角都是直角。
师:你们掌握的真不错!为了奖励你们,陈老师一会儿想给你们变个魔术,想看吗?
想象一下,老师要拉动长方形框架一组对角,会发生什么呢?
(教师拉动长方形框架对角使其变为另一个图形。向不同的方向拉,这样反复做几次。)
师:你们想不想试一试? (学生跃跃欲试。)
(二)探索新知。
1、做一做:
(1)师:虽然你桌面上没有老师手里这个活动的长方形,可是数学无处不在,大家可以自己用手比一个长方形啊!请你仔细观察长方形被拉动前和被拉动后什么变了、什么没变呢?先自己试一试然后前后桌互相说一说你的想法。
(通过动手操作,学生应该会发现长方形拉动后角不再是直角了或是角的大小变了,但边的长度没有变。)
(2)以小组汇报方式在全班反馈:新图形与长方形的联系与区别,描述新图形的形状。
师:哪一组愿意来说一说新图形和长方形有什么相同点和不同点呢?
生:*行四边形和长方形一样,都有四条边,对边相等,都有四个角。不同的是,长方形四个角都是直角,而*行四边形一组对角是钝角,一组对角是锐角。
(学生语言表达不一定清楚,但只要意思对,就要给予鼓励。)
(设计意图通过动手操作,让学生根据自己的活动体验、小组交流自主发现*行四边形与长方形的联系与区别。)
(3)你们知道长方形变化后得到的是什么图形吗?
生:*行四边形。(也可在第一环节出)
(4)师:谁能说一说*行四边形有什么特点呢?
生:*行四边形有4条边,对边相等;有4个角(对角相等)。
2、猜一猜:
师:如果接下来出示的图形都是可活动的,猜一猜哪些能拉成*行四边形,哪些不能拉成*行四边形,并说一说原因。
注意听清游戏的规则:图形出示后,先用眼睛去看,然后用大脑去思考,最后听老师指令,当老师说“举”时用手势告诉我答案。(教会孩子用手势比√和×)
(正方形能拉成特殊的*行四边形:菱形;梯形的对边不相等,不能拉成*行四边形;*行四边形有4个角,圆形没有,所以圆形不能拉成*行四边形;*行四边形有四条边,所以三角形和五边形不能拉成。)
3、找一找:
师:生活中你们在哪里见过*行四边形?先和你的小伙伴说一说。
谁愿意告诉老师?
其实啊,*行四边形在我们生活中的应用也很广泛呢!我们一起来看一看吧!
(设计意图:通过真实的生活情境进一步认识*行四边形,让学生感到*行四边形离我们并不远。)
师:同学们,你们知道这些物品为什么要设计成*行四边形吗?其实啊它们是应用*行四边形的不稳定性。
师:这些*行四边形你*时都注意到了吗?希望你们今后都能用那双善于发现的眼睛去观察我们的生活!
4、拼一拼:(以游戏的方式进行。)
(1)师:我们再来玩个拼图游戏吧!用你们手中的七巧板来拼一拼我们今天新认识的*行四边形,如果遇到困难,可以两人一组哦!
(2)生进行拼图游戏,教师巡视指导。
(鼓励学生用多种组合拼出*行四边形。学生拼图过程中可以与同伴随意交流。)
(设计意图学生经过以上的数学活动,可能已经疲劳了,根据儿童的心理特点,此活动以游戏的方式进行,让学生在轻松、愉快的气氛中拼一拼,进一步直观认识*行四边形。)
5、火眼金睛:
师:下面5块瓷砖中,哪块不同于其他四块?
6、画一画:(备用)
打开教材第69页,看最下面的点子图,你能接着画出*行四边形吗?
(学生尝试独立完成,教师巡视了解情况,指导有困难的学生)
(设计意图:在引导学生观察操作的基础上,具体感知*行四边形的特征,逐步形成*行四边形的表象,为进一步研究*行四边形奠定基础。)
(三)课堂小结。
师:这节课我们认识了一个新图形――*行四边形,并知道了它的特点。请你们对生活中物体再进行观察,去找一找我们身边的*行四边形。只要*时注意观察积累,你就会发现数学其实就在我们身边!
《*行四边形面积》教学反思3篇(扩展7)
——《*行四边形的面积》评课稿3篇
《*行四边形的面积》评课稿1
听了XX老师执教的五年级数学的《*行四边形的面积》,使我受益匪浅,让我深切的感受到只有让学生主动学习,积极参与课堂活动,才能发展学生思维,激活学生的智慧点,提高学生的创新和分析的能力。具体概括为以下几点:
1、导入部分通过交流问题生成单,让学生提炼出最想提最有价值的问题,找准了学生的问题点,并激发了学生的学习积极性,给学生充分的营造了学习氛围,使他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得了广泛的数学活动经验。
2、在小组活动时,XX老师多次鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,并参与到学生的讨论交流中,激活了学生的思维,引发了学生的转化思想。学生积极动手、动脑,从不同角度思考,发现了*行四边形可以转化成长方形进行计算,这一环节使课堂充满了实效性,让学生经历了知识的形成过程。
3、课末检测的设计有层次、有梯度。设计了A类和B类,有基础性练习,也有拓展思维练习,使不同学生有不同发展。
《*行四边形的面积》评课稿2
听了孙老师和白老师执教的《*行四边形的面积》一课,两节课都层次清晰,尊重学生在学习过程中的主体地位,通过学生的数、剪、拼、摆等系列操作活动,着重培养了学生主动探究新知的意识与运用知识解决实际问题的能力。
一、教学思路清晰,目标明确,重难点突出。孙老师一开始以比较长方形和*行四边形两个花坛的大小引出本课,激发学生的探究欲望,思考解决的方法。白老师是先回忆了以前学过的*面图形及其面积,并在一开始就渗透了*行四边形相对应的高和底。
二、大胆放手让学生思考,重视动手操作引导学生探究,渗透“转化”思想
整个教学过程孙老师先让学生猜测*行四边形的面积,然后通过拉动长方形使之变成*行四边形,发现周长没变面积变小了,从而否定了面积等于邻边相乘。两位老师都给足时间让学生动手操作,对于面积公式的推导都是建立在学生的数、剪、拼、摆的操作活动之上的,教师只是引导,而不是包办,让学生在独立思考和交流的基础上进行操作,学生也通过活动,发展学生的空间观念,培养动手操作能力。白老师在学生用割补法之前在上出示了具体要解决的问题,让学生带着问题操作,要求明确,便于学生操作。
三、练习设计各有千秋,形式多样,层层递进,并突出*行四边形的面积用底乘高必须是相对应的才可以。孙老师的练习贴近生活,体现了数学与生活的紧密联系,说明生活中数学的重要性。白老师设计的自我检测很好,简单梳理了*行四边形面积的推导过程,使学生对于这个转化的思路更加条理。
建议:
孙老师的练习中学生的独立练习少,应该让学生亲自体验解决问题的步骤,这样印象会更深刻。白老师在独立练习时,如果叫两名学生板演,在讲解时会更直观,便于学生观察记忆,也便于发现问题。
《*行四边形面积》教学反思3篇(扩展8)
——*行四边形的面积教案设计
*行四边形的面积教案设计1
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《*行四边形的面积》。*行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解*行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算*行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算*行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与*行四边形之间的关系,从而推导出计算*行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索*行四边形面积的计算公式,初步感受转化思想;让学生掌握*行四边形面积的计算公式,能够运用公式正确计算*行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
*行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等*面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历*行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握*行四边形面积计算公式。
【教学难点】*行四边形面积计算公式的推导过程。
【教具】两个完全一样的*行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不*整的部分剪下,再*移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究*行四边形面积公式的推导打下坚实的基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的*行四边形胶合板。我觉得这是一件好事,因为*行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块*行四边形胶合板的面积,这节课我们就来探究“*行四边形的面积”。(板书课题:*行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想*行四边形面积的计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出*行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1*方厘米)的长方形,再将一个*行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个*行四边形的面积是多少*方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个*行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算*行四边形的面积?
2、引导学生把*行四边形转化为长方形,验证猜想推出*行四边形的面积公式。
我们用数方格的方法得到一个*行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个*行四边形)这个*行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是*行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?*着移到右边,这种方法我们把它叫做*移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?*移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把*行四边形转化成了长方形,原来*行四边形的面积和这个长方形的面积相等吗?*行四边形的底和高分别与长方形的长和宽有什么关系呢?
小组讨论:
⑴原来*行四边形的面积和拼成的长方形的面积相等吗?
⑵原来*行四边形的底与拼成的长方形的长有什么关系?
⑶原来*行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,*行四边形的面积等于剪拼后的长方形的面积。(板书)*行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)
师:长方形的面积=长×宽,那么*行四边形的面积怎样求?
生:*行四边形的面积=底×高(板书)
师:同意吗?谁能讲一讲,为什么*行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对“*行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:5×4=20(*方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=6×4=24(*方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
五、分层练习,强化应用。
1、填空。
(1)把一个*行四边形转化成一个长方形,它的面积与原来的*行四边形( )。这个长方形的长与*形四边形的底( ),宽与*行四边形的高( )。*行四边形的面积等于( ),用字母表示是( )。
(2)0.85公顷=( )*方0.56*方千米=( )公顷
2、计算下面各个*行四边形的面积。
(1)底=2.5cm,高=3.2cm。 (2)底=*dm,高=7.5dm。
3、解决问题。
(1)小明家有一块*行四边形的菜地,面积是120*方米,量得底是20米,它的高是多少?
(2)一块*行四边形钢板,底8.5m,高6m,它的面积是多少?如果每*方米的钢板重38千克,这块钢板重多少千克?
(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)
六、总结升华,拓展延伸。
1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?
(设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的`归纳、总结、概括、表达等多方面的能力。)
2、课后练习
(1)、练习十五第1题,第2题。(任选一题)
(2)、解决问题:选一个*行四边形的实物,量出它的底和高,并计算出面积。
*行四边形的面积练习题
1、填一填
(1)1*方米=( )*方分米=( )*方厘米
(2)把一个*行四边形转化成长方形,它的面积与原来的*行四边形的面积( )。
转化后长方形的长与*行四边形的( )相等,宽与*行四边形的( )相等。
(3)*行四边形的面积=( )×( ),字母公式为( )
(4)一个*行四边形的底是8.5米,高是3.4米,求其面积的算式是( )
(5)等底等高的两个*行四边形的面积( )
2、判断
(1)形状不同的两个*行四边形面积一定不相等( )
(2)周长相等的两个*行四边形面积一定相等( )
(3)知道一个*行四边形的底和其对应的高的长度就能求出它的面积( )
3、一块*行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?
24厘米
50厘米
升级跷跷板
4、有一个*行四边形的面积是56*方厘米,底是7厘米,高是多少厘米?
5、一快*行四边形的菜地,底是36米,高是25米,每*方米收白菜8千克,这块地共收白菜多少千克?
6、一个*行四边形的果园,底是30米,高是15米,中了90棵梨树,*均每棵梨树占地多少*方米?
智慧摩天轮
7、已知下图中正方形的周长是36厘米,求*行四边形的面积。
8、一块*行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?
*行四边形的面积教案设计
【教材分析】
本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“*行四边形区域”。*行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对*行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算*行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算*行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与*行四边形的关系,推导出*行四边形面积的计算公式。
(教学目标)
知识与能力目标:使学生运用数的*方法和填充法,探索*行四边形面积的计算公式,初步感受变换思想;使学生掌握*行四边形面积的计算公式,并能正确地利用该公式计算出*行四边形的面积。
过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。
情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。
【学习情况分析】
*行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解*行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等*面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画*行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握*行四边形面积的计算公式。
【教学难点】*行四边形面积计算公式的推导过程。
【教学辅助工具】两个相同的*行四边形、不规则图形、黑板、剪刀、多媒体、课件。
(教学过程)
首先,创建情景并引入主题。
1.游戏介绍:小魔术师。老师展示不规则的图形。
老师:你能直接算出这个图形的面积吗?
老师:你能算出这个图形的面积吗?告诉我怎么用它?
老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?
2. 小结:刚才同学们把不*整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)
(设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道
*行四边形的面积教案设计
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算*行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和*移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握*行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解*行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和*行四边形图片、剪刀、*行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为*行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那*行四边形的面积我们怎样求呢?这节课,我们就共同来探讨*行四边形的面积。(板书课题)
出示长方形和*行四边形教具,引导学生观察后说一说长方形和*行四边形的各部分名称。长方形与*行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求*行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究*行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求*行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
②填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下*行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出*行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把*行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将*行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和*行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把*行四边形转化成长方形后,( )没变。因为长方形的长等于*行四边形的( ),宽等于*行四边形的( ),所以*行四边形的面积=( ),用字母表示是( )
2、求*行四边形的面积必须知道*行四边形的( )和( )。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和*行四边形。得出:长方形的长是6米,宽是4米,*行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和*行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各*行四边形的面积
A、底12米,高3米:
B、高4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的*行四边形,不一定等底等高。
(2)画*行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条*行线间,画底为六个格(底固定),看能画出多少个*行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,*行四边形面积就一定相等。
2.等底等高的*行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
*行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用*行四边形框架演示由长方形拉成*行四边形)。如果把长方形拉成*行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
*行四边形的面积教案设计
1.进一步认识*行四边形是中心对称图形。
2.掌握*行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3.充分利用*面图形的旋转变换探索*行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用*行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1.*行四边形的特征:对边( ),对角( )。
2.如图,在*行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆*行四边形的特征。)
二、引导观察。
1.按照课本第30页“探索”画一个*行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。
2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出*行四边形的特征:*行四边形的对角线互相*分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在*行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握*行四边形对角线互相*分以及对边相等的应用。)
例3如图,在*行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1.如图,在*行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2.在*等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3.*行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相*行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出*行线之间的垂线段的长度。得到*行线又一性质:*行线之间的距离处处相等。
5.练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条*行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题
*行四边形的面积教案设计
*行四边形的面积计划学时1
学习内容分析
学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究*行四边形的面积,计算*行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。
学习者分析
根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,
教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握*行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。
2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
过程和方法:合作学习,自主探索
情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
知识点学习水*媒体内容与形式使用方式使用效果
*行四边形面积的计算还未学*行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示*行四边形与长方形的转换过程在ppt展示*行四边形与长方形的转换过程使得同学更形象生动了解长方形和*行四边形之间的转换,有利于同学推导出*行四边形的面积公式
课后练习同学们已经学习了*行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解*行四边形公式,有利于同学的学习
教学过程
教学环节教学内容所用时间教师活动学生活动设计意图
展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为*行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出*行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫
让同学们通过已经学习的知识计算*行四边形的面积
同学们通过已经学习的知识计算*行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出*行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。
通过ppt的转换总结得出*行四边形面积公式*行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换*行四边形展示出来引导同学说出*行四边形的面积对刚刚的学习进行总结,得出*行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍*行四边形的"高"和"底".让学生体验将*行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣
对*行四边形公式进行巩固练习同学已经学*行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心
课堂教学流程图
教学过程
一、情境创设,揭示课题
师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?
生:*行四边形
师:对了,就是*行四边形,你们在这个过程中什么改变了什么没有发生改变呢?
生:形状,角度,面积
师:那面积是变大还是变小
生:此时回答不一
教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,*行四边形的面积。(板书)
二、创设问题情景,引发自主探索.
1、提出问题,鼓励猜测
那么大家猜一猜*行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个*行四边形,(演示)还可能与什么有关?(高)那么*行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、自主探究、验证猜测:
师:用剪刀把*行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?
3、展示成果,互相交流
同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和*行四边形的面积关系
指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。
方法二:转化法
师:有什么发现?
师:你们成功的把*行四边形转化成了长方形,这一长方形与原来的*行四边形有什么关系?
生:长方形的长等于*行四边形的底、宽等于*行四边形的高
师:是这样吗?师课件演示解说强调*移
师:还有其他的剪拼方法吗?
4、整理结论
师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的*行四边形之间,你发现了什么?
提问:(1)*行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与*行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求*行四边形的面积的方法呢?
师:你们觉得这几种方法有没有共同之处?
(都是沿高剪开的,都是把*行四边形转化成长方形)
课件演示,结合课件填写各部分间的相等关系。
板书:底=长高=宽长方形的面积=正方形的面积
师:我们一起读一下我们发现的结论。
师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。
师:你学到了些什么?
师:如果用表示S*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形面积的计算公式可以写成:S=ah
三、方法应用
师:现在我们来算一下这块*行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)
师:这个*行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)
师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是*方厘米呀?
四、梳理知识,总结升华
师:这节课同学们通过猜想发现*行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?
五、课堂检测
修改建议
结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。
推荐访问:反思 面积 教学 平行四边行的面积教学反思