奥数试题第1、一件工程,甲队单独做要15天完成,乙队单独做要20天完成。两队合做要多少天完成?2.一件工作,甲单独做要6小时完成,乙单独做要4小时完成,丙单独做要3小时完成。三人合做要几小时完成?下面是小编为大家整理的奥数试题集锦11篇,供大家参考。
奥数试题 第1篇
1、一件工程,甲队单独做要15天完成,乙队单独做要20天完成。两队合做要多少天完成?
2.一件工作,甲单独做要6小时完成,乙单独做要4小时完成,丙单独做要3小时完成。三人合做要几小时完成?
3.一个水池,装有甲、乙、丙三个水管,甲乙为进水管,丙为出水管。单开甲管2小时可将空水池注满,单开乙管3小时可将空水池注满,单开丙管4小时将满池水放完。三管齐开,多少时间才能把空池注满?
4.一项工程,甲独做8天可以完成,乙独做8天只能完成这项工程的4/5,如果甲、乙合做,多少时间才能完成这项工程?
5.一批零件,甲独做12天完成,乙独做8天完成。甲、乙先合作3天,余下的由乙独做,还要几天完成?
6.文教印刷厂装订一批复习资料。师傅9天可装订3/4,徒弟20天可装订5/6。师徒两人合作,几天可以装订完?
7.有—项工程。甲、乙两队合做12天完成,丙、乙两队合做20天完成,甲、丙两队合做15天完成。甲、乙、丙三队合做需多少天完成?
8.一条公路,如果由甲队独修需30天完成,由乙队独修5天完成这条公路的1/4。甲、乙两队合修3天后,余下的由乙独做,还需要几天才能修完?
9.一项工程,甲独做9天完成,乙独做6天完成。甲独做4天后,乙与甲合做。还要多少天才能完成?
10.一项工程,甲、乙合做10天可完成,甲、乙合做8天后,乙又单独做了5天才完成。若由乙单独做这项工程,需要多少天?
奥数试题 第2篇
1、菜场里面瘦肉的单价是肥肉的2倍,奶奶买了2千克的瘦肉和8千克的肥肉,共用去216元,1千克瘦肉多少元?1千克肥肉多少元?
答案:肥肉:18元,瘦肉:36元
解析:假设216全部买的肥肉,那么肥肉的价格为:216÷(2x2+8)=18元,瘦肉就是:18x2=36元
2、某人看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩下20页,这本书一共有多少页?
答案:60页
解析:设这本书一共有X页,第一天看了25%X页,第二天看了(25%X+10)页。
那么:X-25%X-(25%X+10)=20,解得X=60页
3、果园里有果树3600棵,苹果树与梨树的棵树比是2:1,梨树和桃树的棵树比是3:1。那么果园里三种果树各有多少棵?
有题意知:苹果树、梨树和桃树的棵树比是2:3:1,一共是6份。
那么苹果树的棵树是3600×2/6=1200棵,梨树的数量是3600×3/6=1800棵,桃树的棵树是3600×1/6=600棵。
4、45立方厘米的水结成冰后,冰的体积是50立方厘米,冰的体积比原来水的体积增加了百分之几?
答案:11.1%
解析:已知水的体积是45,冰的体积是50,那么增加了50-45=5,增加的百分数就是5÷45=11.1%
5、老师买了同样6支钢笔和9本笔记本,一共付了90元,已知2支钢笔可以买3个笔记本,求钢笔和笔记本的单价各是多少?
答案:钢笔是7.5元,笔记本是5元一本。
解析:已知2支钢笔可以买3本笔记本,同理,6支钢笔和9本笔记本就相当于18本笔记本,一共付了90元,所以每本笔记本是90÷18=5元,同理算出钢笔是7.5元。
6、有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖?
答案:20克
解析:原来7%的糖水和新加入糖的质量比为90:3,即7%的糖水质量是新加入糖的30倍,需要加20克糖。
7、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?
答案:432分钟
解析:甲行驶2.5小时的路程,乙用了3.5小时。所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
8、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?
答案:25%
解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/5)÷1/5=25%
奥数试题 第3篇
1、一项工程,甲、乙两队合做需12天完成,乙、丙两队合作需15天完成,甲、丙两队合作需20天完成,如果有甲、乙、丙三队合作需几天完成?
2、一项工程,甲单独完成需12天,乙单独完成需9天,若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?
3、做一件工程,甲独做需要12小时完成,乙独做需要18小时完成,甲、乙合做1小时后,然后由甲工作1小时,再由乙工作1小时,…….两人如此交替工作,完成任务还需要多少小时?
4、加工一批零件,甲、乙合做1小时完成了这批零件的11/60,乙、丙两人接着生产1小时,又完成了全部的3/20,甲、丙又合做2小时完成了1/3 ,剩下的任务由甲、乙、丙三人合作,还需多少小时完成?
5、一条公路,甲队独修需24天完成,乙队独修需30天完成,甲、乙两队合修若干天后,乙队停工休息,甲队继续修了12天完成,乙队修了多少天?
6、甲、乙两队挖一条水渠,甲队单独挖要8天完成,乙队单独挖要12天完成,现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成,乙队挖了多少天?
7、某工程队预计30天修完一条水渠,先由18人修12天后完成工程的1/3,如果要提前6天完成,还要增加多少人?
8、一项工程,甲2小时完成了1/5,乙5小时完成了剩下的1/4,余下的部分由甲、乙合作完成,甲共工作了多少小时?
9、一个水池,甲、乙两管同时打开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满(这时乙管关闭),那么乙管单独开灌满水池需多少小时?
10、 师、徒两人共同加工一批零件,师傅每小时加工9个,徒弟每小时加工个,完成任务时,徒弟比师傅少加工120个,这批零件共有多少个?
11. 一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?
12. 师徒三人合作承包一项工程,8天能够全部完成.已知师傅单独做所需的天数与两个徒弟合作所需天数相同.师傅与徒弟甲合作所需的天数的4倍与徒弟乙单独完成这项工程所需的天数相同.问:两徒弟单独完成这项工程各需多少天?
13. 一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?
14. 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?
15. 一个水池有两个排水管甲和乙,一个进水管丙.若同时开放甲、丙两管,20小时可将满池水排空;
若同时开放乙、丙两水管,30小时可将满池水排空,若单独开丙管,60小时可将空池注满.若同时打开甲、乙、丙三水管,要排空水池中的满池水,需几小时?
奥数试题 第4篇
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10、(周期问题)2021年7月1日是星期六,求10月1日是星期几?
奥数试题 第5篇
_____年级 _____班 姓名_____ 得分_____
1. 加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加_____人.
2. 54人12天修水渠1944米,如果人数增加18人,天数缩到原来的一半,可修水渠_____米.
3. 一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.
4. 某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.
5. 某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.
6. 一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成.
7. 某机床厂第一车间的职工,用18台车床,2小时生产机器零件720件,20台这样的车床3小时可生产机器零件_____件.
8. 4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨.现在有煤77吨,用一辆大卡车和小卡车同时运_____次运完.
9. 某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高 .这样_____天完成.
10. 8个人10天修路840米,照这样算,20人修4200米,要_____天.
解答题:
11. 某工程队施工时,欲将一个池塘的水排完,若用15台抽水机,并且每天抽水8小时,则7日可排水1260吨;若每天抽水12小时,要求14天排水7560吨,则应需几台抽水机?
12. 光华机械厂一个车间,原计划15人3天做900个零件,生产开始后,又增加一批任务,在工作效率相同下,要10个人8天完成,问增加了几个零件?
13. 光明小学有50个学生帮学校搬砖,要搬2000块,4次搬了一半,照这样算,再增加50个学生,还要几次运完?
14. 一根木料,锯成2段,要3分钟,如果锯成6段要多少分钟?
---------------答 案----------------------
1. 10人.
解: (39600-13200)÷(13200÷30÷10×15)-30=10(人).
2. 1296米.
解: 1944÷54÷12×(18+54)×(12÷2)=1296(米).
3. 28人.
解: (28×25-28×5)÷(25-5-10)-28=28(人).
4. 16天.
解: (15×16-5×16)÷(16-6)=16(天).
5. 12天.
解: 2520÷(1620÷9÷12×14)=12(天).
6. 12天.
解: 15×4×18÷[(15+3)×(4+1)]=12(天).
7. 1200件.
解: 720÷18÷2×20×3=1200(件).
8. 14次.
解: 77÷[(80÷4÷5)+(36÷3÷8)]=14(次).
9. 16天.
解: (12000+12000×0.28)÷(12000÷15+12000÷15× )=16(天).
10. 20天.
解: 4200÷(840÷10÷8×20)=20(天).
11. 先求出1台机器1小时排水的吨数: 1260÷7÷8÷15=1.5(吨).
再求出1台机器每天排12小时排足14天的水的吨数: 1.5×12×14=252(吨).
最后求出所需要的`台数: 7560÷252=30(台).
综合式: 7560÷[1260÷15÷(8×7)×(12×14)]=30(台).
12. 先求出每个人每天做的个数: 900÷15÷3=20(个).
再求出共做的个数: 20×10×8=1600(个).
最后求出增加的个数: 1600-900=700(个).
13. 先求出每个学生每次运的砖数: 2000× ÷4÷50=5(块).
再求出现在的学生一次过运的砖数: (50+50)×5=500(块).
最后求出还要运的次数: 2000× ÷500=2(次).
简便方法: 4÷[(50+50)÷50]=2(次).
14. 先求出锯一下用的时间: 3÷(2-1)=1.5(分钟).
再求出锯6段用的次数: 6-1=5(次).
最后求出共用的时间: 1.5×5=7.5(分钟).
奥数试题 第6篇
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10、(周期问题)20xx年7月1日是星期六,求10月1日是星期几?
奥数试题 第7篇
基本概念:
一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:
先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
奥数试题 第8篇
奥数是一种理性的精神,使人类的思维得以运用到最完善的程度.让我们一起来阅读六年级奥数试题问答---原来面积,感受奥数的奇异世界!
一个长方形,如果宽不变,长增加6米,那么它的.面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?
答案与解析:由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。(36÷3)×(54÷9)=108(平方米)
为您提供的六年级奥数试题问答---原来面积,希望给您带来启发!
奥数试题 第9篇
1. 某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个床位.该校有宿舍_____间,学生_____人.
2. 用库存化肥给麦田施肥,如果每公亩施6千克,就缺200千克;如果每公亩施5千克,则剩下300千克,那么有_____公亩麦田,库存化肥_____千克.
3. 用一根绳子测量井的深度,如果线绳两折时,多5米,;如果绳子3折时,差4米,绳子长_____米,井深_____米.
4. 小玲买5千克苹果,可多余1元8角钱;如果买6千克,还差1元2角.每千克苹果价钱是_____元,小玲带的钱是_____元.
5. 某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人.参加劳动的有_____人.
6. 挖一条水渠,如果每人挖24米,则超过总长120米,如果每人挖30米,则超过总长300米.挖渠共有_____人,渠长_____米.
7. 一根绳子,如果剪5段,则差2米;如果剪3段,则余下8米.绳子长_____米.
8. 箱子里有若干只袜子,如果每次取7只,则剩下6只,如果每次取9只,则差8只.箱子里_____只袜子.
9. 工人铺一条路基,若每天铺260米,铺完全路长就得延长8天;若每天铺300米,铺完全路长仍要延长4天,这条路长_____米.
10. 一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有两只猴没有分到,如果每只猴子分8个,则刚好分完.有_____个桃子.
解答题:
11. 幼儿园有梨数是桃子数的2倍,分给幼儿园小朋友,每人分桃5个,最后余下15个;每人分梨14个,则梨数差30个.问幼儿园有桃、梨多少个?
12. 课外活动跳绳比赛,其中2组各借绳4根,其余的组借5根,这样分配最后余下12根;如果每组借6根,这样恰好借完.问有绳多少根?
13. 小明用一元买了5支铅笔和8块橡皮,余下的钱,如果买一支铅笔就不足2分;如果买一块橡皮就多出1分.每支铅笔多少分?每块橡皮多少分?
14. 小玲从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校.如果每分钟走50米,则要迟到3分钟,小玲的家到学校有多远?
答 案:
1. 59人.
解: (14+4)÷(7-5)=9(间);
9×5+14=59(人).
2. 500公亩; 2800千克.
解: (300+200)÷(6-5)=500(公亩);
500×5+300=2800(千克).
3. 54米,22米.
解: (5×2+4×3)÷(3-2)=22(米);
(22-4)×3=54(米).
4. 16.8元.
解: (1.8+1.2)÷(6-5)=3(元);
3×5+1.8=16.8(元).
5. 50人.
解: 10÷(12-10)=5(组),5×10=50(人).
6. 30人; 600米.
解: (300-120)÷(30-24)=30(人);
30×30-300=600(米).
7. 23米.
解: (8+2)÷(5-3)×5-2=23(米).
8. 55只.
解: (6+8)÷(9-7)×9-8=55(只).
9. 7800米.
解: 260×8-300×4=880(米);
880÷(300-260)=22(天);
260×(22+8)=7800(米).
10. 80个.
解: (10×2)÷(10-8)=10(只),10×8=80(个).
11. 90个; 180个.
解: 因为梨数是桃数2倍,如果每人分梨5×2=10(个),最后余下15×2=30
(个).因为14个比5个的2倍多14-5×2=4(个),分到最后差30个.所以30+30=60
(个)为总差,每次多分4个为分差,幼儿园有60÷4=15(人).
桃数有5×15+15=90(个),梨有90×2=180(个).
12. 10组; 60根.
解: [12-(5-4)×2]÷(6-5)=10(组);
6×10=60(根).
13. 6分.
解: 如果小明多2分钱的话,正好可以买6支铅笔和8块橡皮.从总的钱数中减去铅笔比橡皮贵的钱,剩下的钱正好是14块橡皮的价钱,可用除法先求出每块橡皮的价钱,进而求出每支笔的价钱.
铅笔:6+2+1=9(分)
橡皮:[100+2-(2+1)×(5+1)]÷14=6(分).
14. 1200米.
解: (80×6+50×3)÷(80-50)=21(分),(21-6)×80=1200(米).
奥数试题 第10篇
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10、(周期问题)20xx年7月1日是星期六,求10月1日是星期几?
奥数试题 第11篇
1.甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的时间多走()米.
考点:
简单的行程问题.
分析:
解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)×40米,解决问题.
解答:
解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:
(0.07+0.08)X=6,
0.15X=6,
X=40;
前一半比后一半时间多走:
(80-70)×40,
=10×40,
=400(米).
答:
前一半比后一半的时间多走400米.
故答案为:400.
点评:
根据题目特点,巧妙灵活地设出未知数,是解题的关键.