当前位置:九力公文网>专题范文 > 公文范文 > 2023六年级数学第二单元下册热门24篇(范文推荐)

2023六年级数学第二单元下册热门24篇(范文推荐)

时间:2023-07-15 20:48:02 公文范文 来源:网友投稿

六年级数学第二单元下册第1篇教学内容:人教版六年级下册16页教学目标:1:知识与技能:了解利率调整的原因,知道如何是收益最大;让学生获得运用数学知识,解决实际问题的能力。2:过程与方法:经历小组合作调下面是小编为大家整理的六年级数学第二单元下册热门24篇,供大家参考。

六年级数学第二单元下册热门24篇

六年级数学第二单元下册 第1篇

教学内容:

人教版六年级下册16页

教学目标:

1:知识与技能:了解利率调整的原因,知道如何是收益最大;
让学生获得运用数学知识,解决实际问题的能力。

2:过程与方法:经历小组合作调查交流储蓄知识,解决和利率有关的实际问题的过程,体会成功的喜悦。

3:情感价值观:感受数学知识与日常生活的密切联系、体会学数学、用数学的乐趣,激发学习知识的热情。

教学重点:深化百分数的意义和运用,掌握百分数问题的解决办法。

教学难点:强调生活体验和社会实践,培养分析和解决问题的能力。

课前准备:学生自己或小组到家附近的银行做调查、网上调查。

教学用具:多媒体、堂上小组汇总用纸:

本课总的设计理念:

本课的教学设计着力体现把生活中的鲜活题材引入学习数学的大课中,只要让数学扎根于生活这个肥沃的土壤,注意以学生的生活实践为基础,选择那些看得见、摸得着、感兴趣的,能激发他们好奇心和求知欲的内容,才是生动的最具创造性的素材。学生才会觉得自己的数学学习是有意义的、有价值的从而产生积极的情感体验和开拓意识也才真正体现培养学生的学习数学、应用数学的意识。

新授课:

一:复习引入

1:跟着学校的吉祥物晶晶和灵灵来到中国银行,让孩子自己发现看到什么数学信息?并根据数学信息说出有关的数学知识?

2:利息是计算方法?

同学们,在前面的学习中,我们知道“利息”与我们的生活是息息相关,可以说“利息”也是我们生财之道。但是不一样的理财方式,带来的效益是不同的,那怎么样理财才能给我们带来尽可能多的回报呢?今天我们一起来探讨《生活与百分数》的联系。

二:探索新知

活动(一):调查最新的利率,了解国家调整利率的原因。

1:自己或小组为单位,汇报家附近银行最新的利率、国债和理财产品。

(给一个调查表学生自己填写,并用于小组讨论与汇总)

2:汇报完后与课本11页的利率表进行对比有什么不同或相同的地方?

(学生自己回答,发表自己的看法)

3:提出问题,你知道国家调整利率的原因吗?

(学生根据自己上网查找资料小组讨论、再汇报)

综合网络的结果,调整理利率的原因大体如下:

A:宏观调控经济发展规划。如:为了限制房地产过热,可以调高利息。

B:抑制通货膨胀,调高利率,引导储蓄,减少市场上资金的流动。

C:控制外汇汇率及外汇储备,调高利率,持有人民币的意愿增加有利于人民币的升值。

活动(二)利用调查的利率来给李阿姨设计收益最大的储蓄方法

我们从宏观上了解到利率也是根据实际需求不断调整。从而具体到我们每个人的实际需求。我们应该选取怎么样的理财方式,也要慎重选择。请根据屏幕的利率表,帮助李阿姨算一算。李阿姨准备给儿子存2万元,供他六年后上大学。如果你们是李阿姨的理财团队,你们会给李阿姨多少种储蓄方法?你怎么说服李阿姨用你们的方法?并告诫李阿姨如何选择理财?

1:带着以上的问题,让小组讨论?

2:小组汇报方法?

3:各小组补充?

4:开始计算

5:小组汇报你选用了那种方法,并把答案算出来。(温馨提示:理财产品有很多种,越高回报率的产品存在的风险越大)(同时板书)

6:学生自己看结果选取最优方案(尝试成功的喜悦)

7:总结:确定储蓄原则:

能定期不活期,

能长期不短期,

能国债不储蓄。

8:学生自己独立完成:

老师有1万元钱,有两种理财 方式:一种是买3年期国债,年利率4.5%;
另一种是买银行1年期理财产品,年收益率4.3%,每年到期后连本带息继续购买下一年的理财产品。3年后,哪种理财方式收益更大? (学生独立完成、交流、指名回答集体订正)

活动(三)了解千分数、万分数。

日常生活中常常见到百分数,但你知道吗?除了百分数还有千分数、万分数!请同学们打开课本16页,自己阅读学习。

1:交流感知;
练习本自己写千分号、万分号!在规定的时间内看看自己能写多少个千分数和万分数!

2:尝试让孩子说说日常生活中常见到的千分数、万分数(自己准备好PPT展示)

三:本课小结

让孩子自己说说自己本课的收获,并回家分享给爸妈知道,自己的理财经验。

四:拓展练习:

结合自己调查的利率表,给自己的压岁钱设计一个合理的方案,供自己六年后上大学用,并算出到期后的本息,明天汇报!

板书设计:

生活与百分数

整存整取 国债 理财产品

A:1+1+1+1+1+1 A:1+1+1+1+1+1 A:一次6年

B:2+2+2 B:3+3

C:3+3

确定储蓄原则

能定期不活期 能长期不短期 能国债不储蓄

六年级数学第二单元下册 第2篇

教学目标

1。理解利率,能利用百分数知识,解决与储蓄有关的实际问题。

2。结合储蓄等活动,学会合理理财,培养分析问题、解决问题的能力。

教学重点难点

理解概念,能利用百分数知识,解决与储蓄有关的实际问题。

教学过程

一、复习引入

1。复习利率有关知识:税收的种类,应纳税额,税率。

2。在日常生活中,我们会积攒一些零用钱,我们积攒的暂时不用的零用钱,会怎么处理呢?学生回答,由学生的回答引出“储蓄”。

3。谁存过钱?怎么存的?将钱存入银行有什么好处呢?讨论利息的情况。

4。这节课我们就来研究相关储蓄方面的知识,探讨利率有关的知识。

二、新课探究

1。自读教材11页例4上面的部分内容:

学习要求:理清以下问题

(1)存款有哪几种方式?

(2)什么是本金?

(3)什么是利息?

(4)什么是利率?

(5)怎样计算利息?

学生自学教材,学习后汇报。教师结合学生汇报,考查学生对利息的理解,对利息公式的理解。

检测:

(1)结合20xx年10月利率表,说说各种存款方式的"年利率是多少?

(2)整存整取一年的年利率是1。50%,表示什么意思?

2。学以致用,教学例4:

(1)出示例4。

(2)读题思考:两年后可以取回多少钱,取回哪些钱?包括几部分?

(3)利息的多少和什么有关系?(引导学生知道是与本金、利率、时间有关)

(4)归纳整理汇报:实际取回的钱数=本金+利息;
利息=本金×利率×时间;

学生独立完成,教师注意巡视学生计算过程,避免丢落项和计算不准确。

三、巩固练习

1。完成教材第11页“做一做”

(1)学生读题,分析题目,比例此题与例4的不同:本金不同,存期不同,利率不同。计算方法相同吗?

(2)学生运用公式独立解答后集体订正。

2。教材第14页“练习二”第9题。

先让学生观察存款凭证,从中能获取哪些信息?本金、利率、时间各是多少?再根据利息的计算方法进行解答。

3。教材第15页“练习二”第12题。

(1)妈妈需要慎重选择吗?怎么办?

(2)第一种方式的时间,利率是多少?第二种呢?

(3)分别计算后比较并做出决定。学生独立解答。讲一讲自己的解题思路。

小结:在实际生活中,我们常常需要这样做出选择,选择时需要用心地算一算,算的过程不要怕麻烦,按照时间和方法一步一步地去想,就能很好地解决问题。

四、课堂小结。

同学们,这节课有什么收获?

学生汇报,引导学生懂得储蓄是利国利民的事情;
在银行存款的方式很多种,如活期、整存争取、零存整取等;
存入银行的钱叫做本金;
取款时银行多支付的钱叫做利息;
利息与本金的比值叫做利率。我们还知道了计算利息的方法是:利息=本金×利率×存期;
计算时遇到步骤比较的计算时,要一步一步认真计算,有耐心,保证计算结果正确。

板书设计

利率

利息=本金×利率×存期(时间)

例4 5000 ×(1+3。75%×2)

=5000×1。075

=5375(元)

答:到期时王奶奶可以取回5375元。

六年级数学第二单元下册 第3篇

难点名称

了解合理购物的意义,能自己做出购物方案,并对方案合理性做出充分的解释。

难点分析

从知识角度分析为什么难

让学生综合运用折扣知识解决生活中的“促销”问题,使学生对不同的促销方式有更深入地认识,经历综合应用知识的过程,具有一定的难度。

从学生角度分析为什么难

解题过程中对学生掌握百分数应用题的数量关系,解决问题的熟练度有较高的要求。“商场促销”虽对学生来说都不陌生,但学生购买促销商品的经验还不足,对各促销方式的实质理解具有一定的难度。

难点教学方法

1、通过复习整理、引导分析、巩固练习,运用百分数的相关知识解决生活中的“促销”问题。

2、通过自主学习、小组讨论、反思总结体会各促销方式的实质。

教学过程

一、导入

1.妈妈想买一件原价700元的裙子,五折之后这条裙子多少钱?(重点理解答五折的意思)

2.指名学生回答

700×50%=350(元)

答:五折之后这条裙子350元

二、知识讲解(难点突破)

3.下面我们来看例题

(1)课件出示例5:某品牌的裙子搞促销活动。在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的.裙子。

读完这段话我们可以提出哪些数学问题呢?

小明提出了这样两个:

①在A、B两个商场买,各应付多少钱?

②选择哪个商场更省钱?

我们一起来解决这些问题。题目给出的数学信息中,哪些是关键呢?

A商场打五折销售,在B商场按“满100元减50元”的方式销售。

打五折它表示现价是原价的50%,那么每满100元减50元是什么意思?快来思考一下吧!

就是在总价中取整百元的部分,每个100元减去50元,不满100元的零头部分不优惠。

(2)在A商场买,直接用总价乘50%就能算出实际花费。列式:230×50%=115(元)

在B商场买,先看总价中有几个100,230里有2个100,然后从总价中减去2个50元。

列式:230-50×2=130(元)230-50×2=130(元)

答:在A商场买应付115元,在B商场买应付130元;
打五折的方式更省钱。

(3)你还有疑问吗?

①满100元减50元,少了50元,也是打五折,怎么优惠的结果不一样呢?

原来打五折就是无论标价是多少,实际售价都是原价的50%。“而满100元减50元”就只能是原价中满了100元的部分能优惠50元,能打五折,而不满100元的部分就没有折扣了。

②什么情况下两种优惠会一样呢?

如果商品的售价刚好是整百元的时候,两种优惠结果是一样的。

(4)回顾与反思

看起来每满100元减50元不如打五折优惠。如果总价能凑成整百多一点就相差不多了。

以后我要陪妈妈购物,帮妈妈算账。

三、课堂练习(难点巩固)

4.巩固练习:某品牌的旅游鞋搞促销活动,在A商场按“每满100元减40元”的方式销售,在B

商场打六折销售。妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

(1)在A、B两个商场买,各应付多少钱?

(2)选择哪个商场更省钱?

A商场:120-40=80(元)

B商场:120×60%=72(元)

80>72

答在A商场买应付80元,在B商场买应付72元,选择B商场更省钱。

四、小结

1.在购物时,可以运用学过的百分数知识对商家的优惠方式进行分析对比,从而选出实惠、省钱的方案。

2.商家的促销方式:“打几折”,“每满100元返50元礼券”,“每满100元减50元”,“买五件送一件”都转化为百分数的知识来理解。

六年级数学第二单元下册 第4篇

教材分析

这一册教材包括下面一些内容:负数、百分数(二)、圆柱与圆锥、比例、数学广角、整理和复习等。

在数与代数方面,这一册教材安排了负数、百分数(二)和比例三个单元。结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。百分数在实际生活中应用广泛,学会解决有关百分数的简单实际问题是加强问题解决教学的重要方面之一。比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。

在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计算的基本方法,促进空间观念的进一步发展。

在用数学解决问题方面,教材一方面结合百分数(二)、圆柱与圆锥、比例等知识的学习,教学用所学的知识解决生活中的简单问题;
培养学生发现问题、解决问题、分析问题和解决问题的能力。

在数学思想方法方面,教材除了结合负数、百分数(二)、圆柱与圆锥、比例、整理和复习等知识,让学生体会、理解和掌握归纳法、类比法、符号思想、分类思想、演绎推理思想、转化思想、数形结合思想、函数思想等思想方法外,还安排了“数学广角”的教学内容,引导学生通过观察、实验、推理等活动,理解和掌握模型思想、归纳法、演绎推理思想,体会运用数学思想、数学思想方法解决问题的有效性、优越性,发展学生的四能。

整理和复习单元是在完成小学数学的全部教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完善头脑中的数学认知结构,为初中的数学学习打下良好的基础;
同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。

学情分析

大部分学生能掌握本册应掌握的基本知识,学习较主动,但有个别学生依赖性较强,思维能力和分析能力都较差,听课时较易分神,学习成绩较不理想。应用类,如应用题,还有个别学生对题目难以理解,解题困难。学生学习习惯大多较好,课堂听课认真,作业基本上都能按时完成。只有少数潜能生学习上仍有惰性,完成作业处于应付状态。本学期尽量多设计分层次作业,让潜能生得到提高,优生得到发展。

学习目标

1、熟练地掌握百分数应用题的数量关系,并能解决问题。

2、通过归纳整理,是学生熟练地掌握解决百分数问题的方法。

3、培养学生良好的学习习惯。

教学重点和难点

认真审题,用百分数解决实际问题。

用百分数解决实际问题。

教学过程

一、复习整理

前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。

学生交流,汇报,教师随机板书,绘制表格。

二、综合运用

课件出示例5。

1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。

2、利用提问,引导学生思考回答,归纳出解题思路。

提问启发:“满100元减50元”是什么意思?

引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。

归纳整理解题思路:

(1)在A商场买,直接用总价乘以50%就能算出实际花费。

(2)在B商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。

3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:

A商场:230×50%=115(元)

B商场:230-2×50

=230-100

=130(元)

115<130,

答:在A商场买应付115元,在B商场,买应付130元;
选择A商场更省钱。

4、总结思考:在什么时候这两个商场价格差不多呢?

三、巩固练习

1、完成教材第12页“做一做”。学生独立完成,教师讲解。

2、完成练习二第12题,再集体交流订正。

3、完成练习二第13题。“折上折”是什么意思?怎么计算呢?

4、完成练习二第14题。

5、完成练习二第15题。提示:增长为“-0.068%”表示什么意思?

四、课堂小结

通过这节课,你有什么收获,你将如何运用到生活中呢?

板书设计

百分数:整理与复习

六年级数学第二单元下册 第5篇

教学目标:

1、让学生经历从实际生活中抽象出百分数的过程,感受百分数在生活中的广泛应用,体会引入百分数的必要性, 感受百分数产生的价值,理解百分数的意义,会正确读、写百分数。

2、使学生会解释百分数的实际含义。

3、提高学生比较、分析信息的能力,体会数学的应用价值,激发对数学的兴趣和应用数学的意识。

教学重点:理解百分数表示一个数是另一个数的百分之几。

教学难点:在具体的情境中理解百分数的实际含义。

教学过程:

一、创设情境,导出主题

1、 谈话引入:

师:同学们,谁能告诉老师,我们的数学知识来自哪里?学生举手回答:来自于生活。

(教师出示课前收集的服装成分百分数图片。)

师:没错,生活中处处有数学。这是老师前段时间买的衣服,同学们,你能从这些图中发现什么数学信息?

2、 揭示主题:

像这里的86%、14%、63.2%、36.8%等数,我们把它们叫做“百分数”。这节课,老师将和同学们一起来认识“百分数”。

二、联系生活,学会读写

1、观察服装成分中的百分数,教师先示范读,再让学生齐读。

2、认识百分号,总结百分数的写法。

三、引导探索,揭示意义

1、教师展示课前搜集的百分数,学生选择自己最喜欢的一个读给同桌听,并说说所选百分数有具体含义。

2、学生汇报,师生评价。同时教师板书出每个分数的具体含义。

3、小结意义,引导学生归纳百分数的意义。

4、利用百格图进一步理解百分数的意义。

四、多层练习,巩固深化

1、选择合适的数,并说明理由。

110% 90% 100% 311.76% 55% 311.76

(1)据统计,国庆长假期间,半数以上的年轻人选择自驾 游,占年轻人出游总数的( )

(2)国庆长假期间,小客车上高速实行免费通行,长假期间小客车高速通行免费率达到( )

(3)高速公路上小客车的速度超过了大客车,小客车的行驶速度是大货车速度的( )

(4)高铁是准点率最高的交通工具,深受人们出行的喜爱,国庆期间全国高铁准点率达到( )以上。

(5)2014年国庆当天,全国122个景区接待游客( )万人次。

2、根据题意选择合适的图示。

图( )最有可能符合第(1)题的意思。

图( )最有可能符合第(3)题的意思。

3、小组讨论:百分数和分数在意义上有什么相同之处和不同之处呢?

五、交流体会,总结提升

让学生回顾这节课学过的内容,谈一谈这节课的高兴、紧张与遗憾各占百分之几?

最后以爱迪生的名言结束本节课。

六年级数学第二单元下册 第6篇

教学目标

1、知识与技能

理解利率的概念,掌握利率在实际生活中的应用。

2、过程与方法

通过对利率的详细讲解以及相关问题的解决,使学生认识到利率在实际生活中的应用。

3、情感态度与价值观

培养学生用数学视角观察生活的习惯独以及立解决问题的能力。

教学重难点

利率与本金、利息、时间的关系;
利率相关问题的解决过程。

教学用具

多媒体课件

教学过程

一、知识回顾

表示一个数占另一个数的百分之几的数,叫做百分数。也叫做百分率或者百分比。百分数通常不写成分数的形式,而是在分子后面加上百分号“%”来表示。

二、新课引入

1、概念理解

老师:同学们是不是都见过银行卡呢?为什么我们要选择把钱存入银行呢?把钱存入银行,不仅可以支援国家建设,使钱更加安全,还能增加一些收入。

在银行的存款方式有多种,如活期、整存整取、零存整取等。存入银行的钱叫做本金,取款时银行多支付的钱叫做利息。单位时间(如1年、1月、1日等)内的利息与本金的比率叫做利率。利息的计算公式是:利息=本金×利率×存期。

根据国家发展规律的变化,银行存款的利率有时会有所调整,20xx年7月中国人民银行公布的存款利率如下表:

2、例题详讲

例:20xx年8月,王奶奶把5000元钱存入银行,存两年,问到期时可以取回多少钱?

老师分析:王奶奶到期取钱时除了本金,还应该加上得到的利息,就是王奶奶可取回的钱。

解:小明的解法:5000 x 3.75% x 2=375(元)5000 + 375 = 5375(元)

小丽的解法:5000 x (1+3.75%x2)= 5000 x (1+7.5%)=5000x1.075=5375(元)

答:到期时王奶奶可以取回5375元。

下面同学们分组讨论小明与小丽解答方法的不同点,说出他们列出的式子的意义。

小明的解法:先算出利息,再加上本金就是取回的钱。

小丽的解法:用本金与单位一加上利息率和时间的乘积相乘,就能得出直接得出可取回的钱。

3、即时练习

20xx年8月,张爷爷把儿子寄来的8000元钱存入银行,存期为5年,年利率为4.75%,到期支取时,张爷爷可得到多少利息?到期时张爷爷一共能取回多少钱?

解:8000 x 5x 4.75%=1900(元)8000+1900=9900(元)

答:到期时张爷爷可得到1900元的利息,一共能取回9900元。

拓展延伸

妈妈有1万元钱,有两种理财方式:一种是买3年期国债,年利率4.5%;
另一种是买银行1年期理财产品,年收益率4.3%,每年到期后连本带息继续购买下一年的理财产品。3年后,哪种理财方式收益更大?

解:第一种方式收益:10000 x 4.5% x 3 = 1350(元)

第二种方式收益:第一年利息10000 x 4.3%=430(元)

第二年利息(10000+430)x 4. 3%=448.49(元)

第三年利息(10000+430+448.49)x 4. 3%≈467.8(元)

总收益430+448.49+467.8=1346.29(元)

1346.29<1350

答:三年后,买3年期国债收益更大。

课外任务

去附近的银行调查最新的利率,并与本节课的利率表进行对比,了解国家调整利率的原因。

本课小结

1、利率的概念和意义。

2、利率有关问题的解答。

3、根据利率的有关概念建立合理的理财方案。

六年级数学第二单元下册 第7篇

【教学内容】

教材第11-12页内容。

【教学目标】

1.理解储蓄的含义,明确本金、利息和利率的含义。能正确地进行利息的计算。

2.经历储蓄的认识过程,体验数学知识之间的联系和广泛应用。

3.激发学生学习兴趣,培养学生的应用意识和实践能力。

【教学重点】

掌握利息的计算方法。

【教学难点】

理解税率的含义。

【教学过程】

一、情境导入

快要到年底了,许多同学的爸爸妈妈单位里会在年底的时候给员工发放奖金。你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?

(启发学生说出各种可能性和原因)

师生共同小结:人们常常把暂时不用的钱存入银行,储蓄起来。这样不仅可以支援国家建设,使得个人钱财更加安全和有计划,还可以增加一些收入,即到期可以取出比存入的要多些的钱。

那么同学们知道为什么有时我们把钱存在银行,最后去取的时候钱会变多呢?

同学们知道吗,在不同的银行,有时我们可以得到不同的利息,因为它们的利率不同。那么,什么是利率呢?今天我们就一起来学习一下。

教师板书课题:利率。

二、探究新知

1.引导质疑,理解相关概念。

(1)学生围绕上面提出的问题,以小组为单位,阅读教科书第11页,不理解的内容可在小组讨论或做上记号。

学生看书时,教师巡视指导,并参与学生的讨论。

(2)汇报交流。

师:通过看书学习和讨论,你知道了储蓄中的哪些知识?能向全班同学汇报一下吗?

教师根据学生的回答板书:

存款方式

活期

定期:零存整取、整存整取

本金:存入银行的钱叫本金。

利息:取款时银行多支付的钱叫利息。

利率:利息和本金的比值叫做利率。

利息=本金×利率×存期

教师说明:利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。同一时期,各银行的利率是一定的。

2.教学例4。

(1)课件出示例4。

(2)引导学生理解题意,本题中本金、利率、存期分别是多少?

(3)到期后取回的钱除了本金,还应加上利息。

(4)学生独立完成,后交流展示。

方法一:5000×3.75%×2=375(元)

5000+375=5375(元)

方法二:5000×(1+3.75%×2)=5375(元)

(5)教师讲解:存期是几年,就要选取相对应的年利率。本金与年利率相乘,得出的是一年的利息,求两年的利息就要乘2。

三、巩固练习

1.完成教科书第11页“做一做”。

先提问本题中本金、利率、存期分别是多少?后学生独立完成,集体订正。

2.完成教科书第14页第9题。

教师引导学生观察存款凭证后提问:存期是多长?半年用多少年计算?

四、课堂小结

这节课你学习了什么?你有哪些收获?

【板书设计】

【教后思考】

储蓄与人们的生活联系密切。本节课中概念较多,教学中结合具体实例,帮助学生理解本金、利息、利率的含义以及三者之间的关系,在引导学生探究学习的过程中,有意识地引导学生把所学知识运用到生活实践中去。学生在解决有关“利率”的问题时,可能会出现以下几个错误:计算利息时忘记乘存期;
没有注意利率和存期的对应性;
计算利息时,存款的利率是年利率,计算时所乘时间的单位应是年等。要将学生的错误转化成学习资源,在纠错中进一步理解和掌握知识。

六年级数学第二单元下册 第8篇

教学目标:

1、巩固对储蓄存款的认识,了解教育储蓄、国债利率

2、在自主活动中进一步熟悉掌握存款利息计算方法

3、培养学生认识到存款利国利民

教学重点:

掌握有关存款形式、利息的计算方法

教学难点:

运用有关知识解决实际问题

教学过程:

一、明确问题

李阿姨要存2万元,供儿子六年后上大学,怎样存款收益最大?

三种理财方式:普通储蓄存款、教育储蓄、购买国债

二、交流汇报有关利率、教育储蓄、国债相关小知识

1、学生汇报自己收集到的相关知识

2、教师释疑

A、收集到的利率为什么与教材上的不同?

B、不同银行存款利率不一样

C、国家利率调整的原因

D、教育储蓄存款存期的计算

三、设计方案

根据利息=本金x利率x存期计算每种方案最后利息

1、学生分组讨论交流,设计不同方案

2、教师巡回指导,选择代表性方案演板

方案一:一年期存6次利息:3880。95元

方案二:二年期存3次利息:4845。9元

方案三:三年期存2次利息:5425。13元

方案四:先存五年期一次,再存一年期一次利息:5492。5元

教育储蓄:五年按六年计算利息:5700元

购买国债:六年利息:6384元

四、讨论:选择方案,比较利弊

根据各种实际情况,灵活选择

五、当堂检测

六、活动总结

七、谈谈本节课的收获与困惑

六年级数学第二单元下册 第9篇

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1、以长方形的长为底面周长,宽为高;

2、以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?

6、圆柱的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

侧面积:S侧=2πrh

表面积:S表=2S底+S侧=2πr?0?5+2πrh

体积:V柱=πr?0?5h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

体积:V锥=1/3πr?0?5h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh

六年级数学第二单元下册 第10篇

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h + 2×πr2

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h

(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的.高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh或πr2×h÷3

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);
②、压路机压过路面长度(求底面周长);
③、水桶铁皮(求侧面积和一个底面积);
④、厨师帽(求侧面积和一个底面积);
通风管(求侧面积)。

小学数学基数和序数简介

基数:一、二、三、四、五、六、七、八、九、十。

序数:第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。

基数在数学上,是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。

序数原来被定义为良序集的序型,而良序集A的序型,作为从A的元素的属性中抽象出来的结果,是所有与A序同构的一切良序集的共同特征,即定义为{B|BA}。

数学图形的变换知识点

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;
②对称点的连线与对称轴垂直;
③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;
②旋转方向;
③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

六年级数学第二单元下册 第11篇

教学内容分析

教材首先用文字说明了储蓄的意义,介绍了本金、利率、利息的意义以及三者之间的关系,然后通过例4让学生掌握计算利息的基本方法。

教学目标

1.知道储蓄的意义,理解本金、利息、利率的意义。

2.掌握计算利息的基本方法。

3.经历收集信息的过程,培养学生在合作交流中解决问题的能力。

重点:掌握利息的计算方法。

难点:正确理解概念,能解决与利息有关的实际问题。

教学设计思路

创设情境,导入新课→合作交流,探究新知→巩固应用,提升能力→课堂小结,拓展延伸

教学准备

教师准备:PPT课件

教学过程

一、创设情境,导入新课。(5分钟)

1.创设情境。

师:同学们一定很喜欢过年吧,因为过年不仅有好吃的,好玩的,还可以得到不少压岁钱。你们的压岁钱是谁在保管着呢?(引导学生想到储蓄比较安全,并且能够得到利息)

2.导入新课。

师:同学们,你们了解储蓄吗?关于储蓄有哪些知识呢?这节课我们了解一下储蓄的知识。

二、合作交流,探究新知。(20分钟)

1.引导学生自学教材第11页关于储蓄的知识。

(1)出示自学提示:

①储蓄的好处。

②储蓄的方式。

③什么是本金、利息、利率?

④利息的计算公式是什么?

(2)检验自学成果,引导学生找出下题中的本金和利息。

课件出示:明明20xx年11月1日把100元压岁钱存入银行,整存整取1年,到20xx年11月1日,明明不仅可以取回存入的100元,还可以得到银行多付给的1.5元,共101.5元。

2.用储蓄的知识解决问题。

(1)课件出示例4,引导学生读题并找出已知条件和所求问题。

(2)组织小组讨论:求2年后可以取回多少钱,就是求什么。

(3)组织学生尝试解题。

(4)组织全班交流,明确解题思路。

思路一:先求利息,最后求可取回多少钱。可取回钱数为本金+(本金×利率×存期)。

思路二:把本金看作单位“1”,先求出本金和2年的利息一共是本金的百分之几,再求可以取回多少钱。可取回的钱数为本金×(1+年利率×2)。

三、巩固应用,提升能力。(10分钟)

1.完成教材第11页“做一做”。

2.完成教材第14页第9题。

四、课堂小结,拓展延伸。(5分钟)

1.这节课我们学习了什么?引导学生回顾总结。

2.计算利息时,存款的利率是年利率,计算时所乘的时间单位应是年;
存款的利率是月利率,计算时所乘的时间单位应是月。

板书设计利率

例4方法一5000×2.10%×2=210(元)

5000+210=5210(元)

方法二5000×(1+2.10%×2)

=5000×(1+0.042)

=5000×1.042

=5210(元)

答:到期时王奶奶可以取回5210元。

培优作业1.刘亮有20xx元,打算存入银行2年。现有两种储蓄方法:第一种是直接存2年,年利率是2.10%;
第二种是先存1年,年利率是1.50%,第一年到期时再把本金和利息合在一起,再存1年。选择哪种储蓄方法得到的利息多一些?

第一种储蓄方法:20xx×2.10%×2=84(元)

第二种储蓄方法:20xx×1.50%×1=30(元)

(20xx+30)×1.50%×1=30.45(元)

30+30.45=60.45(元)

60.45<84,选择第一种储蓄方法得到的利息多一些。

提示:在累计存期相同的情况下,一次性存款比其他存款方式所获得的利息要多一些。

2.赵伯伯把一笔钱存入银行5年,年利率为2.75%,到期后取得275元利息。赵伯伯存入银行多少钱?

275÷2.75%÷5=20xx(元)

答:赵伯伯存入银行20xx元。

教学反思培养学生的数学能力是小学数学教学的重要任务之一。为此,教学中,要引导学生正确运用公式计算各种情况下的利息问题。

微课设计点教师可围绕“利息的计算方法”设计微课。

六年级数学第二单元下册 第12篇

教学目标:

1、进一步理解、掌握运用分数、百分数知识解决有关问题。

2、发展应用意识,形成解决问题的一些策略、方法。

3、愿意对数学问题进行讨论,提高分析问题和解决问题的能力。

教学重难点:

1、重点是运用分数、百分数知识解决有关问题。

2、难点是提高分析问题和解决问题的能力。

教学过程:

一、设美引趣:同学们!我们在六年级上学期学习过用分数、百分数解决问题。今天我们就来对此类问题进行的巩固,使大家解决问题的能力得到提升!这节课我们将有三个环节的考查,每个环节都比上一个更有挑战。大家准备好了吗?现在我们进入第一个环节:温故练习,考查一下看哪个同学做得又快又对!

二、析美乐学:(课件)

1、全班完成下面分数应用题的解答。

① 六年级举行“小发明”比赛,六⑵班同学上交40件作品,六⑴班同学上交的作品是六⑵班的。六⑴班交了多少件作品?40×=32(件)答:

② 六年级举行“小发明”比赛,六⑴班同学上交32件作品,六⑴班同学上交的作品是六⑵班的。六⑵班交了多少件作品?32÷=40(件)答:

③ 六年级举行“小发明”比赛,六⑵班同学上交40件作品,六⑴班比六⑵班少交20%。六⑴班交了多少件作品?40×(1-20%)=32(件)答:

④ 六年级举行“小发明”比赛,六⑵班同学上交40件作品,六⑵班比六⑴班多交25%。六⑴班交了多少件作品?40÷(1+25%)=32(件)答:

⑤ 六年级举行“小发明”比赛,六⑴班同学上交32件作品,六⑵班比六⑴班多交。六⑵班交了多少件作品?32×(1+ )=40(件)答:

⑥ 六年级举行“小发明”比赛,六⑵班同学上交40件作品,比六⑴班少交。六⑴班交了多少件作品?40÷(1-)=50(件)答:

2、小组展示:每组展示题目及算式后由全班同学评判对、错。

教师引导:刚才我们用分数、百分数来解决问题。我相信大家已经掌握了分数、百分数解决问题的方法和步骤。大家第一环节都做得非常好!为了进一步提高我们解决问题的能力。现在我们进入第二个环节:组间相互设疑。

课件:《主题:围绕分数、百分数的解题方法与步骤提出设疑》

提问方的问题要有针对性;
答问方的回答要有准确性!

三、展美设疑:

规则:由一个组提出分数、百分数解决问题中的一个问题,其他小组随机回答!

问题预设:⑴分数、百分数解决问题的有哪些步骤?

⑵你认为步骤中哪一步最关键?

⑶单位“1”怎样去确定呢?

⑷怎样判断用分数乘法或除法列式?

⑸有什么方法可以更好的帮助你分析数量关系?

⑹单位“1”不容易确定时,怎么办?

板书:分数、百分数解决问题方法与步骤:

四、赏美提升:

刚才大家的表现太精彩了,问题问得在点,答题答得准确。通过大家的质疑对抗,相信已经把分数、百分数解决问题的方法与步骤进行温故而知新!下面是我们的最后一个环节:

⑴请你将题目补充完整并用分数解答;

⑵请你先解答,再按要求改编分数应用题。

全班完成,小组展示!

例题:六⑴班男生20人,_________________________________________。六⑴班女生有多少人?

例题:一本书有100页,第一天读了全书的,第二天又读了一些,这时已读页数与未读页数的比是2:3。问第二天读了多少页?(改编成一道分数除法应用题)

五、审美总结:

回顾本节课的学习,说一说你有哪些收获?你建议大家应该特别注意哪些关键点?非常感谢刚才代表各个小组积极发言的同学们!在同学们的共同努力下,大家分析与解决问题的能力确实提高了。相信大家在以后的学习中会有更好的表现!

巩固练习(组长检查)

① 五(1)班有35人,女生占了,男生有多少人?35×(1-)=14(人)答:

② 一辆汽车从甲地开往乙地,行了全程的,离乙地还有125千米,甲乙两地相距多少千米?125÷(1-)=200(千米)答:

③ 三(1)班男生比女生多,也就是多了6人,三(1)班共有多少人?

6÷=20(人)20+6+20=46(人)答:

④ 一批零件,第一天完成全部的,第二天做了10个,这时已做的零件与未做的零件之比为1:1。求这批零件共有多少个?

10÷( - )=50(个)答:

六年级数学第二单元下册 第13篇

一、教学内容

应用百分数解决生活中有关促销的实际问题。(教材第12页例5)

二、教学目标

1.能熟练解决与折扣有关的实际问题。

2.根据不同优惠,探究解决问题的最优方案。

3.经历从实际情境中抽象出百分数的过程,体会百分数在生活中的重要性。

三、重点难点

重点:运用百分数的相关知识解决问题。

难点:将复杂的折扣问题转化成简单的百分数问题。

教学过程

一、复习引入

师:前面我们已经学习了折扣、成数、税率和利率,并能够按折扣计算商品价格,应用成数进行农业收成等有关计算,求应纳税额以及计算利息等问题。在解决这些问题时,我们必须明确问题中的数量关系,下面就请同学们一一回顾一下折扣、成数、税率、利率相关的计算公式。

学生独立思考,小组交流,集体汇报。师生共同总结:(课件出示)

现价=原价×折扣;

几成表示十分之几,即百分之几十;

收入×税率=应纳税额;

利息=本金×利率×存期。

师:通过前面几节课的学习,我们知道折扣、成数、税率、利率问题都可以转化为百分数问题来解决。而且,也只有转化为百分数问题,才可以更好地确定数量关系和解题思路。今天我们就来探讨一下与折扣有关的实际问题。(板书课题:解决问题)

二、学习新课

教学教材第12页例5。

(课件出示教材第12页例5)

师:“每满100元减50元”是什么意思?(点名学生回答)

明确:在总价中取整百部分,每个100元减去50元。不满100元的零头部分不优惠。

师:如果在A商场买,应付多少钱?(点名学生回答,说清楚解题思路)

已知A商场打五折销售,妈妈要买的裙子标价是230元,这样就能算出在A商场买这条裙子需要的钱数是原价的50%,列式为230×50%=115(元)。(板书)

师:如果在B商场买,应付多少钱?(点名学生回答,说清楚解题思路)

妈妈要买的这条裙子230元里面有2个100元,所以减去的是2个50元,即50×2=100(元),那么妈妈在B商场买这条裙子还需要230-100=130(元)。(板书)

115元<130元,显然是A商场更便宜些,应该建议妈妈去A商场买更省钱。

师:想一想,在哪个商场买更省钱与商品的总价有关系吗?如果总价正好是一个整百数,选择哪个商场更省钱?

学生思考,讨论交流。

明确:在B商场,如果总价正好是一个整百数,那么实际付的钱数是总价的一半,相当于A商场的五折,即此时两个商场的优惠力度相同。

师:如果总价不是一个整百数,选择哪个商场更省钱?

学生思考,讨论交流。

明确:在B商场,如果总价不是一个整百数,那么最后实际的花费为整百部分的一半加上零头部分。而A商场的五折既包括整百部分的五折,还有零头部分的五折,此时选择A商场更省钱。

师:同学们,通过这节课的学习,对你以后购物有什么启发呢?

学生交流。

小结:通过计算比较一下几种购买方案,才能知道哪种购买方式比较便宜。所以,购物时我们要根据促销方式的不同,选择不同的商店,充分利用商家的优惠策略,就能够少花钱多购物,这就是“合理购物”。

三、巩固反馈

1.完成教材第12页“做一做”。(点名学生板演,教师点评)

(1)A商场:120-40=80(元)

B商场:120×60%=72(元)

(2)80>72,B商场更省钱。

2.完成教材第15页“练习二”第13题。

甲品牌:260-100=160(元)

乙品牌:260×60%×95%=260×0.6×0.95=148.2(元)

148.2<160,乙品牌的更便宜。

3.某旅游团共有成人12人,学生7人,他们到一个风景名胜地观光旅游,以下是导游了解到的门票报价:

A.成人票每张30元。

B.学生票半价。

C.满20人可以购团体票,在成人票价上打七折。

如果你是其中一员,你会制定怎样的购票方案。(学生交流讨论,集体汇报不同方案)

方案一:30×12+30÷2×7=465(元)

方案二:30×20×70%=420(元)

四、课堂小结

通过这节课,你有什么收获,你将如何运用到生活中呢?

板书设计

解决问题

例5

(1)A商场:230×50%=115(元)

B商场:230-50×2=130(元)

答:在A商场买应付115元,在B商场买应付130元。

(2)115<130

答:选择A商场更省钱。

教学反思

1.购物在学生日常生活中是经常遇到的,这节课正是把现实生活中常见的各种促销策略融入教材,通过几个情境的展示以及几个问题的讨论,让学生综合运用数学知识来分析不同情况下各个商店的优惠策略,从而择优选择。

2.对于教学内容为综合应用的课时,一般是对前面一个或几个课时知识点的总结、巩固与提升。我们应该在复习旧知和提高学生分析、应用能力上分清主次,并根据学生学习状况等反馈信息及时进行相应调整,切忌在这种类似练习课的课堂中忽略学生的主体地位,而只重视传授不顾启发学生。在每一个引导提问、学生讨论的环节,应给予学生足够的思考时间,并且收集学生存在的问题后,再进行集中讲解。

3.我的补充:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

备课资料参考

典型例题准备

【例题】一个商场打折销售,规定购买200元以下(包括200元)商品不打折,200元以上500元以下(包括500元)全部打九折,如购买500元以上的商品,就把500元以内(包括500元)的打九折,超出的打八折。李川买了两次,分别用了189元、432元,那么如果他一次购买这些商品的话,可节省多少元?

分析:(1)200元以下(包括200元)商品不打折,最多付款200元;
(2)200元以上500元以下(包括500元)全部打九折,最少付款200×90%=180(元),最多付款500×90%=450(元);
(3)500元以上的就把500元以内(包括500元)的打九折,超出500元的部分打八折,最少付款450元。189元>180元,说明原价就是189元或属于第(2)种情况;
432元<450元,它属于第(2)种情况;
再把钱数相加后根据第(3)种情况计算可节省的钱数。

解答:200×90%=180(元)

189元>180元,说明没有打折,原价就是189元;
或者打九折,原价是189÷90%=210(元)。

500×90%=450(元)

432元<450元,说明原价就是432÷90%=480(元)。

当原价是189+480=669(元)时,450+(669-500)×80%=585.2(元)

189+432-585.2=35.8(元)

当原价是210+480=690(元)时,450+(690-500)×80%=602(元)

189+432-602=19(元)

答:可节省35.8元或19元。

解法归纳:分段折扣问题中,已知实际支付的钱数求原价时,应根据折扣计算方式分情况讨论。

相关知识阅读

关于百分数的成语

十拿九稳:90% 百里挑一:1%

事半功倍:200% 事倍功半:50%

半途而废:50% 平分秋色:50%

百发百中:100% 一箭双雕:200%

十室九空:10% 十全十美:100%

半壁江山:50% 一刀两断:50%

六年级数学第二单元下册 第14篇

课题利率

教学内容教学内容:利率(课本第11页例4)

课型新课

教学目标

1、学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息。

2、能正确计算利息。

教学重点:利息的计算

教学难点:利息的计算。

教学手段课件。

教学方法联系生活,引导学习,总结提升;
自主学习,小组讨论

教学过程

一,导入新课:

同学们,你们去过银行吗?你知道去银行人民常做什么吗?你知道我们周围有什么银行?你见过银行卡吗?

二、创设生活情境,了解储蓄的意义和种类

1、储蓄的意义

师:快要到年底了,许多同学的爸爸妈妈的单位里

会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?

2、储蓄的种类。(学生汇报课前调查)

三、自学课本,理解本金“、”利息“、”利率“的含义

1、自学课本中的例子,理解”本金“、”利息“、”利率“的含义,然后四人小组互相举例,检查对”本金“、”利息“、”利率“的理解。

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:;
利息与本金的百分比叫做利率。

2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

3、利息计算

(1)利息计算公式

利息=本金×利率×时间

(2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是3。75%)。

在弄清以上这些相关概念之后,学生尝试解答例题。

在学生独立审题解答的基础上订正。

方法一方法二

5000×3。75%×2=375(元)

5000×(1+3。75%×2)

5000+375=5375(元)=5000×1。075

=5375(元)

四、实践应用

第11页做一做

完成练习时看清题目认真审题,注意计算要准确。

五、课堂总结

学生谈谈学习本课有什么新的收获。

作业

第14页的第9题

板书设计

利率

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:;
利息与本金的百分比叫做利率

利息计算公式

利息=本金×利率×时间

六年级数学第二单元下册 第15篇

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h + 2×πr2

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h

(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh或πr2×h÷3

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);
②、压路机压过路面长度(求底面周长);
③、水桶铁皮(求侧面积和一个底面积);
④、厨师帽(求侧面积和一个底面积);
通风管(求侧面积)。

六年级数学第二单元下册 第16篇

教学目标:

1、让学生经历从实际生活中抽象出百分数的过程,感受百分数在生活中的广泛应用,体会引入百分数的必要性, 感受百分数产生的价值,理解百分数的意义,会正确读、写百分数。

2、使学生会解释百分数的实际含义。

3、提高学生比较、分析信息的能力,体会数学的应用价值,激发对数学的兴趣和应用数学的意识。

教学重点:理解百分数表示一个数是另一个数的百分之几。

教学难点:在具体的情境中理解百分数的实际含义。

教学过程:

一、创设情境,导出主题

1、 谈话引入:

师:同学们,谁能告诉老师,我们的数学知识来自哪里?学生举手回答:来自于生活。

(教师出示课前收集的服装成分百分数图片。)

师:没错,生活中处处有数学。这是老师前段时间买的衣服,同学们,你能从这些图中发现什么数学信息?

2、 揭示主题:

像这里的86%、14%、63.2%、36.8%等数,我们把它们叫做“百分数”。这节课,老师将和同学们一起来认识“百分数”。

二、联系生活,学会读写

1、观察服装成分中的百分数,教师先示范读,再让学生齐读。

2、认识百分号,总结百分数的写法。

三、引导探索,揭示意义

1、教师展示课前搜集的百分数,学生选择自己最喜欢的一个读给同桌听,并说说所选百分数有具体含义。

2、学生汇报,师生评价。同时教师板书出每个分数的具体含义。

3、小结意义,引导学生归纳百分数的意义。

4、利用百格图进一步理解百分数的意义。

四、多层练习,巩固深化

1、选择合适的数,并说明理由。

110% 90% 100% 311.76% 55% 311.76

(1)据统计,国庆长假期间,半数以上的年轻人选择自驾 游,占年轻人出游总数的( )

(2)国庆长假期间,小客车上高速实行免费通行,长假期间小客车高速通行免费率达到( )

(3)高速公路上小客车的速度超过了大客车,小客车的行驶速度是大货车速度的( )

(4)高铁是准点率最高的交通工具,深受人们出行的喜爱,国庆期间全国高铁准点率达到( )以上。

(5)2014年国庆当天,全国122个景区接待游客( )万人次。

2、根据题意选择合适的图示。

图( )最有可能符合第(1)题的意思。

图( )最有可能符合第(3)题的意思。

3、小组讨论:百分数和分数在意义上有什么相同之处和不同之处呢?

五、交流体会,总结提升

让学生回顾这节课学过的内容,谈一谈这节课的高兴、紧张与遗憾各占百分之几?

最后以爱迪生的`名言结束本节课。

六年级数学第二单元下册 第17篇

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1、以长方形的长为底面周长,宽为高;

2、以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的`面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?

6、圆柱的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

侧面积:S侧=2πrh

表面积:S表=2S底+S侧=2πr?0?5+2πrh

体积:V柱=πr?0?5h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

体积:V锥=1/3πr?0?5h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh

小学数学单位换算公式大全

长度单位换算:

1千米=1000米。

1米=10分米。

1分米=10厘米。

1米=100厘米。

1厘米=10毫米。

面积单位换算:

1平方千米=100公顷。

1公顷=10000平方米。

1平方米=100平方分米。

1平方分米=100平方厘米。

1平方厘米=100平方毫米。

体(容)积单位换算:

1立方米=1000立方分米。

1立方分米=1000立方厘米。

1立方分米=1升。

1立方厘米=1毫升。

1立方米=1000升。

重量单位换算:

1吨=1000千克。

1千克=1000克。

1千克=1公斤。

人民币单位换算:

1元=10角。

1角=10分。

1元=100分。

时间单位换算:

1世纪=100年。

1年=12月。

大月(31天)有:135781012月。

小月(30天)的有:46911月。

平年2月28天,闰年2月29天。

平年全年365天,闰年全年366天。

1日=24小时1时=60分。

1分=60秒1时=3600秒。

数学因数与倍数知识点

1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2、一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

六年级数学第二单元下册 第18篇

教学内容:新人教版六年级下册教材第16页综合实践课《生活与百分数》

教学目标:调查银行最新利率,了解利率调整的原因;
了解普通储蓄存款和购买国债两种理财方式,知道如何是收益最大,学会理财;
了解千分数、万分数的概念;

通过活动更多地接触实际生活中的百分数,体会数学应用的广泛性,提高在生活中发现数学、运用数学的意识和能力;

通过小组合作交流,培养向他人学习,与他人沟通和交流的习惯,提高实践能力。

教学重点:深化百分数的意义和运用,掌握百分数问题的解决办法。

教学难点:强调生活体验和社会实践,培养分析和解决问题的能力。

教学过程:

一、谈话导入

师:同学们喜欢过新年吗?

生:喜欢。

师:为什么呢?

生:因为有许多好吃的。

生:因为有压岁钱。

师:哇,说到压岁钱大家如此开心!那你收到压岁钱之后怎么处理呢?

生:买我喜欢的东西。

生:用来交生活费、学习费用等。

生:交给爸爸妈妈存入银行。

师:你的想法真不错!我们把钱存入银行就是在进行储蓄,而储蓄中的利率和百分数是息息相关的。其实,生活中许多方面都离不开百分数。今天,我们将继续和大家一起来研究生活与百分数。打开幻灯片1,板书课题:生活与百分数。

设计意图:这个环节从学生感兴趣的话题入手,设计了学生们喜闻乐见的情景,吸引学生的注意力,充分让学生在熟悉、亲切的生活背景素材中自然而然地抓住新旧知识的衔接点,启发学生的思维,激发学生内在的学习动力,同时也验证了“数学源于生活,也用于生活”的道理。

二、新授

1.活动一:调查利率,对比利率,了解国家调整利率的原因。

师:昨天,老师给大家布置了一个作业,让同学们去调查一下附近银行整存整取的最新利率,你调查的是哪家银行的利率呢?请拿出活动一的表格跟我们分享一下吧!

生:我调查的是建设银行的利率情况:活期利率是0.30﹪;
三个月的利率是1.43﹪;
六个月的利率是1.69﹪;
一年的利率是1.95﹪;
二年的利率是2.73﹪;
三年的利率是3.575﹪;
五年的利率是3.575﹪

师:打开幻灯片2,谢谢你汇报的如此详细,请坐。调查其它银行利率情况的同学们,你们的结果与他调查的利率相同吗?

生:相同。

师:接下来,请同学们翻开课本第11页,这是20xx年的利率,我们把它和大家调查的最新利率进行对比,请抬头看黑板,为了便于观察,老师把它们放在了一块儿,我们先横向的看看20xx年活期利率与定期利率,你有什么发现呢?20xx年活期利率与定期利率呢?现在如果你去存钱,你会优先考虑活期还是定期呢?我们再纵向的看看20xx年与20xx年相同存期的利率,你又有什么发现呢?打开幻灯片3。

生:
相同存期,利率下调了许多。

师:你非常善于发现问题,真了不起!打开幻灯片4,利率下调,人们可获得的利息减少,人们便不愿把钱存入银行,而是用于各项投资与消费,这样就会促进经济增长;
反之,利率上调,人们便会把更多的钱存入银行来换取较大的收益,而不愿去冒投资房地产或炒股的风险。

设计意图:此环节从生活实际入手,让学生调查银行最新的利率,采用学生自主探究为主,教师点拨引导为辅的策略,让学生在生活实例中感知,在积极思辨中发现:银行利率是在动态调整的,每次调整背后一定存在国家经济状况和政策的变化。这样的活动不可能非常深入,但对于学生理解数学在现实生活中的应用价值以及形成在生活中发现数学、运用数学的意识和能力,具有不可忽视的作用。

2.活动二:寻找最大收益方案

师:虽然利率可调,但计算利息的方法却是不变的。那就是:利息=本金×利率×存期(板书在黑板上)。打开幻灯片5。隔壁李阿姨替儿子积攒了20000元压岁钱,李阿姨想存入银行供他六年后上大学,银行给李阿姨提供了二种理财方式,普通储蓄存款和购买国债。请你帮李阿姨想一想,她有几种存款方案?哪种方案六年后的收益最大?老师有3个疑问:李阿姨想存多少钱?存几年?要求是什么?(学生回答,老师板书)

师:第一种理财方式是普通储蓄,普通储蓄和教育储蓄的年利率是相同的,只是教育储蓄没有利息税,但国家从20xx年开始就停止了对普通储蓄收取5﹪的利息税,这样一来,教育储蓄便没有了优势,所以后来取消了教育储蓄这种理财方式。普通储蓄有一年期、二年期、三年期和五年期。相关利率就是大家昨天去银行调查到的利率,打开幻灯片6,现在只选择普通储蓄,如果你是李阿姨,你会怎样存钱呢?

生:2个三年期。

师:你真棒,掌声送给你!马上在副黑板板书:3+3.老师像这样写,大家能看懂吗?(能)好的。

那还有其它不同的存法吗?请6人为小组进行讨论,由各小组长把讨论结果记录在活动二的表中。

生:6个一年期;
3个二年期

师:马上板书1+1+1+1+1+1和2+2+2

生:1个五年期+1个一年期;
1个二年期+4个一年期

师:马上板书5+1和2+1+1+1+1

生:1个三年期+3个一年期;
2个二年期+2个一年期

师:马上板书3+1+1+1和2+2+1+1

若没有学生举手了,老师引导学生补充

师:还可以1个一年期+1个二年期+1个三年期,并快速板书1+2+3同学们请看,老师把大家讨论的8种方案基本上按照次数从大到小的顺序填入了这张表中,唯独这里,为了便于大家的观察,稍微做了一下调整。

以上8种方案,哪一种收益最大呢?我们先来看看存6次和存5次谁的收益更大?我们发现,到第四次,它们的收益相同,实际上我们只需比较1年+1年与2年谁的收益大就可知道结果了。以20000元为例,1年+1年的收益是20000×1.95﹪×1=390(元)

(20000+390)×1.95﹪×1≈398(元)(保留整数)390+398=788(元);
2年的收益是20000×2.73﹪×2=1092(元)所以结果是?(学生答)1年+1年的收益<2年的收益。那存5次与存4次谁的收益大呢?(生:存4次)

师:为什么呢?

生:因为1年+1年的收益<2年的收益。

师:你真的很会活学活用,我非常佩服你!那存4次与存3次谁的收益大呢?

生:存3次。

师:对呀!还有哪些能这样比较出收益的大小呢?

生:存4次与存3次。

师:真的是这样,大家看看,剩下的这些方案还能像刚才那样一下就比较出大小吗?

生:不能了。

师:好,那我们就动动手,算一算。请每个小组中,3人列式,3人计算,分工合作,我们比比谁的速度最快?各小组汇报结果,分别是:3459;
3809;
4035;
4520

师:只选择普通储蓄,8种方案中收益最大的是:3+3

那存钱次数与收益之间有没有关系呢?观察得知,学生答,存钱次数越少,收益越大。【设计意图】在这个环节中,学生的任务是学习普通储蓄这种理财方式,通过小组合作,运用前面所学求利息的方法得到了普通储蓄8种方案中收益最大的存法以及存钱次数与收益之间的关系,这为探究下一种理财方式做了铺垫。学生们在这个环节所学到的不仅仅是怎样解题,更重要的是增强了团队意识,体会到同学之间互相学习的优越性。

师:第二种理财方式是购买国债。国债是国家通过向社会筹集资金所形成的债权、债务关系。国债有一年期(现不发行)、三年期和五年期。相关利率如下表,打开幻灯片7,教育储蓄三年期利率是3.575%,国债三年期利率比它高0.425%,国家对国债的发行时间和发行量有严格的限制,不是随时随地都能买到。如果只选国债,可以怎样存钱呢?

生:2个三年期。

师:真厉害!你叫什么名字呢?老师很想认识你!点开活动二的表中,国债3+3。那这种方案的收益是多少呢?请各小组动手算一算,比比谁算得又对又快?

生:5088元。

师:刚才李阿姨分别选择了普通储蓄和国债来存钱,那她可以同时选择普通储蓄和国债来存钱吗?能。大家还记得存钱次数与收益有什么关系吗?学生回答。要让收益最大,你认为李阿姨最好存几次呢?

生:2次。

师:具体存法是?

生:国债1个五年期+普通储蓄1个一年期;
国债1个三年期+普通储蓄1个三年期

师:快速点出5+1和3+3因为教育储蓄三年期利率比国债三年期利率少0.425%,所以这种方案的收益小于国债2个三年期的收益,我们将它排除。那我们算一算5+1的收益吧!各小组赶紧行动起来!4896元。

师:只选普通储蓄,只选国债和两种都选这三类,还有其它类不同的方案吗?没有了。现在我们可以发现:李阿姨共有11种存款方案,包括了普通储蓄8种,国债1种,混合2种。其中,让李阿姨收益最大的存法是:国债2个三年期(板书在黑板上)如果买不到国债,我们选择哪种方案呢?普通储蓄:3+3

设计意图:此环节通过解决一个实际问题,引导学生通过各种理财方式的比较,设计合理的存款方案,实际应用数学,学会科学理财,将提高学生的实践能力落到实处。

3.了解千分数和万分数

师:我们已经认识到百分数表示一个数是另一个数的几分之几,你知道千分数表示的意义吗?万分数呢?请看课本第16页,我们一起听听它的介绍。播放课文录音,打开幻灯片8。

设计意图:这一环节采用倾听的方式,一改往日齐读的方法,介绍了千分数和万分数的含义和应用实例,使学生知道当数据之间的比率比较小时,用千分数和万分数表示更方便,进一步拓宽学生视野。

三、实践活动

打开幻灯片9,学了这节课,老师给大家布置一个课外作业:请你给自己的压岁钱设计一种收益最大的方案,供自己六年后上大学,并计算到期后的本息。

设计意图:此练习环节引导学生展开多角度、多层次的比较,将知识迁移到存压岁钱上大学这一问题上,进一步巩固新知,提高数学思维过程。

四、课堂小结

师:这节课同学们通过观察、分析、发现规律,并掌握了用规律解决实际问题,使复杂的问题简单化的学习方法。希望大家运用本节课学到的本领,一直用它来合理规划自己的生活,那么老师相信:二十年、三十年后,我们班一定会出现像马云和李嘉诚那样的财富大亨!打开幻灯片10,下课,谢谢同学们的积极参与与配合,同学们,再见!

设计意图:数学课不仅是知识的传递,更是思想的传递。本节课中渗透的类比、转化等数学思想方法,对学生的后续学习真正受用。

五、板书设计

生活与百分数

利息=本金×利率×存期

20000元 存六年

收益最大:国债2个三年期

普通储蓄:

1年+1年的收益 20000×1.95﹪×1=390(元)

(20000+390)×1.95﹪×1≈398(元)(保留整数)390+398=788(元);

2年的收益 20000×2.73﹪×2=1092(元)

1年+1年的收益<2年的收益

六、教学反思

其实百分数在生活中的运用非常广范,但学生实际接触的却比较少,特别是这节讲银行利率百分数的课,经过深思熟虑之后,最后我选择了“创设情境、导出课题-主动探究、自主建构-灵活应用、拓展延伸”的教学流程。整个教学设计把学生已有的经验和知识自然地融合在一起,让学生在实际生活中学习数学。学生不仅掌握了知识,提高了能力,而且形成了积极的情感、态度和价值观,这也正是新一轮课程改革要追求的一种境界。

六年级数学第二单元下册 第19篇

教学内容:人教版六年级数学下册P16《生活与百分数》

教材分析:教材紧接着百分数(二)这一单元,安排“生活与百分数”这一“综合与实践”活动,目的是让学生进一步了解百分数在生活中的运用,提高数学应用意识和实践能力。

学情分析:学生已经掌握了求利息的方法,通过这一实践活动更加提高了他们对百分数知识的应用能力,从而感受到百分数在生活中的价值。

教学目标:

1、初步感知利率的调整与国家经济发展之间的关系。

2、结合具体情境,经历综合运用所学知识解决理财问题的过程。学会设计合理的存款方案,能对自己设计的方案做出合理的解释。

3、从小培养理财意识,感受理财的重要性,培养科学、合理理财的观念。

教学重点和难点:学会设计合理的存款方案,能对自己设计的方案做出合理的解释。

教具准备:学生搜集的银行利率信息及网上查找的资料,多媒体课件

教学过程:

一、谈话引入

课前,我给大家提前布置了调查任务,同学们以小组为单位,对学校和家庭周边的银行进行了走访调查,记录了一些银行近期的利率,那么,同学们通过这项活动是否已经感受到了百分数在生活中的.价值了呢?但是不一样的理财方式,带来的收益是不同的,那么怎样理财才能给我们带来尽可能多的回报呢?那就让我们一起来进入今天的活动吧!

二、探索新知

活动1 --初步感知利率的调整与国家经济发展之间的关系

老师把同学们抄来的存款利率进行了整理,(出示最新存款利率一览表)对比一下,它与教材第11页的利率表有什么不同?

你了解到的国家调整利率的原因是什么呢?

学生发表自己的想法:

教师小结:

一、大幅降息有助于降低企业财务成本,保障国民经济的稳健发展

二、大幅度降息对房地产业是个直接的利好,将大大降低房地产业的贷款费用,同时也给有需求的贷款买房者减少了购房成本,促进购房消费。

三、大幅度降息对金融证券市场将产生活跃作用。

四、大幅度降息对消费有刺激作用。

活动2--利用普通储蓄存款设计合理的存款方案

我们从宏观上了解了利率也是根据实际需求在不断调整的,那具体到我们个人的实际需求,则是选取怎样的理财方式才能使我们的存款到期后收益最大。

现在请大家根据咱们调查到的存款利率帮李阿姨算一算,如果她准备给儿子存2万元,供他六年后上大学,怎样存获得的收益最大?

首先我们要考虑什么问题?

预设:

1.去哪家银行存?选择银行,说明理由。

2.怎样安排存期?(6个一年期;
3个两年期;
2个三年期;
1个五年期和1个一年期)

明确:存期为六年,必定需要取出后再次存入,要想使6年后的收益最大,咱们是把每次的利息取出只存本金合算还是连本带息一起存入合算呢?

可以小组合作,用计算器计算。

学生进行小组合作,教师巡视了解情况。

交流汇报:通过计算学生认识到一次性存入的方法比分成很多次存入所获得的利息多。而一年期利息少,所以五年期配一年期的存款方式也不合算。最终发现存六年还是存2个三年期最合算。

活动3--利用教育储蓄和国债设计合理存款方案

另外两种类型的理财方式:教育储蓄存款和购买国债。

因为教育储蓄可以免收利息税,而原来的普通储蓄需要交纳利息税,所以以前存教育储蓄的人很多。但是现在普通储蓄也免收利息税了,所以教育储蓄已经失去了其优势,慢慢地退出历史舞台。

购买国债还是可以的(出示20xx国债利率)我们还以小组为单位,一起来分析一下,帮李阿姨设计一个合理的存款方案,使六年后的收益最大。

学生继续进行小组合作,教师巡视了解情况。最后进行汇报。

三、课堂小结

通过这节课的学习,同学们肯定收获满满,说说吧,你有哪些收获? 学生自由交流各自的收获体会。

看来百分数在我们的生活中真是无处不在啊,生活中蕴含着无穷的数学知识,希望同学们关注我们的生活,热爱我们的数学,积极用数学知识解决生活中的问题。

四、课后延伸

生活中不仅仅有百分数,还有千分数、万分数,请同学们课后阅读教材P16“你知道吗?”理解更多的知识。

五、课堂作业

你们也即将毕业,可以为自己的压岁钱也做一个理财计划,看看怎样存能够让六年后的收益最大?

板书设计

生活与百分数

存6年 存2个三年期的最合算

六年级数学第二单元下册 第20篇

教学目标

1.理解本金、利息和利率的含义,掌握利息的计算方法,会正确的计算存款利息。

2.使学生初步认识储蓄的含义,感受到储蓄给人们生活带来的方便及益处。

3.使学生感受数学在生活中的作用,培养学生初步的理财意识和实践能力。

教学重难点

1.利息和本息和的计算。

2.利息和本息和的计算。

教学过程

1.谈话

大家的压岁钱是怎么管理的?为什么把钱存入银行?

2.导入。

把钱存入银行,会获取一部分利息,怎么计算利息呢?这就是我们今天要学习的内容。

1.探究有关储蓄的知识。

(1)储蓄的好处。

(2)储蓄的方式。

(3)什么是本金、利息、利率以及三者之间的关系?

2.深入理解有关储蓄的知识。

课件出示:小红20xx年9月1日把100元钱存入银行,整存整取一年,到20xx年9月1日,小红不仅可以取回存入的100元,还可以得到银行多付给的3元,共103元。

引导学生找出题中的本金和利息。

3.探究利息、利息与本金和的计算方法。

(1)分析题意,引导学生探究利息的计算方法。

(2)组织学生尝试解题,交流汇报。

巩固实践爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为5.40%,到期一次支取,支取时凭非义务教育的学生身份证明,可以免征储蓄存款利息所得税。

(1)贝贝到期可以拿到多少钱?

(2)如果是普通三年期存款,应缴纳利息税多元?

板书设计

利率

本金:存入银行的钱叫做本金。

利息:取款时银行多付的钱叫做利息。

利率:利息与本金的百分比叫做利率。

利息=本金×利率×存期

方法一:方法二:

5000×3.75%×2=375(元)5000×(1+3.75%×2)

5000+375=5375(元)=5000×(1+0.075)

=5000×1.075

=5375(元)

六年级数学第二单元下册 第21篇

难点名称

理解本金、利息、利率之间的数量关系,利率和存期一一对应

难点分析

从知识角度分析为什么难

利息=本金×利率×存期,求整年度的利率,只要根据利率表,把整年度的利率和存期一一对应起来,相乘、再乘本金即可求出整年度的利息。但是求半年的利息,学生往往容易出现本金×半年的利息×6。看见根据公式的有问题,学生的利率和存期的关系一一对应起来。

从学生角度分析为什么难

学生对什么是利息,概念抽象、理解困难,六年级学生的心理上一看套公式解决问题,心理的松了,机械的带公式解决问题。学生没有理解半年的年利率的含义,年利率的和存期没有一一对应起来,导致错误。

难点教学方法

1.通过错例对比分析,发现利率和存期是一一对应关系,

2.通过一题多解的方式,学生理解利率和存期一一对应关系

教学过程

一、导入

1.谈话,将多余的钱存入银行即可增加收入,又支援了国家建设。

2.出示存单,介绍利息,思考利息与什么有关系?

二、知识讲解(难点突破)

3.出示利率表,根据利率表解决第一个问题,王奶奶到银行存钱,到期后可以取多少钱?思考问题的同时介绍本金、存期、利息的概念,出示求利息的计算公式,解决王奶奶本金5000元,存期1年后可取回多少钱的问题。

4.改变存期,本金不变,存期由一年变成两年,两年后王奶奶可取回多少钱?主要考察学生能否把存款的利率和存期一一对应起来,

存款是整年:只要用本金×年利率×存期就能求出相应的利息了。

5.设疑激趣,引发学生思考

改变存期由两年调整到半年,半年后的利率是多少呢?

出示计算方法,5000×1.55%×6=465(元)

发现半年的利息怎么比一年的利息还高呢?问题出在哪里?

6.寻找出错原因

(1)1.55%是半年的利率,6是6个月,6个月是多少年呢?1/2或0.5年,现在计算是多少?

(2)介绍另一种计算方法,突出利率和存期可对应关系,

5000×1.55%÷12×6=38.75(元)

(4)通过两种计算利率的方法,理解利率和存期的对应关系。

存期用多少年表示,就要用年利率;
存期用多少月表示,就要用月利率。

三、课堂练习(难点巩固)

7.巩固练习

王奶奶本金不变,存期三个月,到期可得多少利息?(独立完成)

5000×1.35%×?=16.88(元)

5000×1.35%÷12×3=≈16.88(元)

四、小结

8.扩展思考:存款、贷款、理财产品都涉及到利率的问题

六年级数学第二单元下册 第22篇

教学目标

1、通过调查利率,了解利率调整的原因;
计算不同的理财方式带来的不同收益,知道如何使收益最大;
了解千分数、万分数的概念。

2、让学生经历整理信息、利用信息的过程,获得运用数学知识解决实际问题的能力。

3、通过探究活动,使学生感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习数学的热情。

教学重难点

1、深化百分数的意义和运用,掌握百分数问题的解决办法。

2、强调生活体验和社会实践,培养分析和解决问题的能力。

教学过程:

一、谈话导入

1、谈话:同学们,在前面的学习中,我们已经知道“利息”与我们的生活息息相关,可以说“利息”也是我们的生财方法之一。但是,不一样的理财方式,带来的效益是不同的,那么怎样理财才能给我们带来尽可能多的回报呢?那就一起来参加今天的活动吧!请同学们先回忆一下,什么是利息和利率?怎样求存款利息?

利息=本金×利率×存期

2、活动1:昨天老师给大家留了作业,让你们去调查一下附近银行的最新利率,并与课本第11页的利率表进行对比,了解国家调整利率的原因,现在小组内交流一下。

(1)学生分组交流,老师选取几份调查表全班展示。

(2)问:你们知道国家为什么要调整利率吗?

【设计意图】

通过对附近银行的调查,不仅了解到当前的利率情况和国家调整利率的原因,还有助于提高学生自主搜集信息的能力。

二、探索新知

1、活动2。

师:我们了解了利率也是根据实际需求不断调整的,而具体到我们个人的实际需求,在选取理财方式时,也要慎重。请根据第16页的普通利率表,帮李阿姨算一算,如果把准备给儿子的2万元存入银行,供他六年后上大学,哪种方法获得的利息最多?

(1)小组合作完成,可以用计算器计算。

出示第16页利率表,小组合作完成时,教师巡视了解情況。

(2)组织学生交流,重点明确存期六年,需要取出再次存入时,要把上一次的利息作为本金的一部分存入。

普通存款:一年一年存存6次共23881。05元

普通存款:二年二年存存3次共24845。94元

普通存款:三年三年存存2次共25425。13元

普通存款:五年一年存存2次共25492。5元

普通存款:一二三年存存3次共24968。49元

国债存款:一年一年存存6次共24871。53元

国债存款:五年一年存存2次共26962元

国债存款:三年三年存存2次共27046。73元

教育储蓄:六年存1次共25700元

(3)这些方案中你会选择哪种方案,为什么?

通过计算,使学生认识到国债的收益最高。

(4)小结:在本金相同、存期相同的情况下,利率越高利息越高。

【设计意图】

在本环节的教学中,主要采取学生自主尝试解决问题的方式,让学生通过计算和对比,发现在本金相同和存期相同的情况下,利率越高利息越高。

2、认识千分数和万分数。

(1)学生自主阅读课本第16页“你知道吗?”

(2)学生交流自己对千分数和万分数的理解。

(3)强调千分号和万分号的写法。

三、课后作业

自己去各大银行了解利率情况,给自己的压岁钱设计一个合理的方案,供自己六年后上大学用,并算出到期后的本息。

四、课堂总结

在本节课的学习中,你有哪些收获?

学生自由交流各自的收获体会。

总结:生活中无处不存在百分率,生活中蕴含着无穷的数学知识,希望同学们关心我们的生活,热爱我们的数学,积极用数学知识解决生活中的同题。

教后思考:

六年级数学第二单元下册 第23篇

教学内容

义务教育教科书六年级下册数学第二单元的例5

教学目标

知识与技能:

1、通过解决购物中的折扣问题,使学生进一步巩固折扣的计算方法,理解并能正确计算。

2、通过多种不同优惠方式的对比,使学生经历综合运用所学知识解决稍复杂的折扣问题的过程,培养学生分析问题、解决问题的能力。

过程与方法:

在解决实际问题的过程中,培养学生观察、分析、推理、概括的能力,同时使学生学会灵活合理地选择购买方案。

情感态度与价值观:

让学生感受百分数在生活中的应用,同时通过对同一商品不同促销手段的对比分析,培养学生全面思考、理性消费的好品质。

教学重点

1、理解“满100减50”和“打五折”的区别。

2、理解购物中的多种优惠形式,并能正确计算出折后价。

教学难点

通过对同一商品不同促销手段的对比分析,使学生学会灵活合理地选择购买方案。

教学准备

课件,计算器。

教学过程

一、引入

师:同学们,这是我们学校举行的手拉手献爱心的活动,你参加过类似的活动吗?那你们是用什么方式献爱心的啊?看得出来,咱们同学都是有爱心的孩子!有一个班同学也想参与这样的公益活动,他们分成了三个小队,其中的常春藤小队想买些学习用品,在商场看到了这样的打折信息:

1、理解含义

50%OFF、—40%、降30%,说说它们的含义。

2、现在有三家店在销售同一款书包,你选哪一个?

为什么?一定是一号店便宜吗?

出示原价:230元188元163元

现在呢?还一定是它吗?同位两个算一算吧。学生汇报。

3、通过解决这个题,你想说点什么?

不仅要看折扣,还要看原价,这个原价其实就是我们常说的“1”

小结:折扣在我们的生活中经常遇到,今天咱们就继续研究生活中的折扣。

二、出示例题

1、你知道哪些打折的方式呢?

2、对比两种不同的打折方式。

“满100元减50元”是什么意思?它和打五折是一回事吗?

3、验证

是不是他们说的这样呢,咱以1号店的这款书包为例,原价230元,同位两个算算看

学生汇报并板书:230*(1—50%)=115(元)230—50×2=130(元)

小结:看来,满一百减五十还是不如打五折便宜。

4、两种折扣方式的区别与联系。

哪种情况下满一百减五十就是打五折,哪种情况下这两种打折方式相差的比较大呢?哪种情况下这两种打折方式相差的小呢?

三、书店买书

班里还有一支小队想要去买书:一套书120元,要买30套,可他们发现各家书店都有不同的促销信息,如何选择呢?

1号店:正在搞店庆,在八折的基础上再打九折

2号店:也有优惠活动,买四赠一,什么意思?

3号店:购价值一百元的会员卡,可享受六五折优惠。

4号店:预存5000元后打六折,这是什么意思?

5号店:满1000返400元书券

1、到底哪种方案适合啊?小组分工合作,讨论一下吧。

2、学生汇报

那你会选择预存吗?你觉得这种情况下会有什么问题?

小结:听了大家的建议,相信这个小队也会根据自己的实际情况灵活地选择购买方案了。

四、你来当卖家

第三支小队,他们手里有一些闲置的全新的物品,想把他们卖出去换成钱捐给山区的小伙伴。如果你是卖家,能运用咱们今天所学的知识设计优惠方案吗?一会咱们比一比,看看哪个小组的方案更合理、更受大家欢迎。

学生汇报

小结:相信这些小队借鉴了咱们的建议,一定能顺利完成捐赠任务。那今天我们既当了买家,又当了卖家,体验了两种角色,你想说点什么?

其实商品的买卖当中蕴含着许多的学问,我们一定要学会理性的消费,智慧地生活。

五、总结

1、通过今天的学习,大家还有什么收获?

2、同学们,除了买东西可以打折,生活中还有更多的折扣问题呢,有兴趣的同学可以课下调查一下。

板书:生活中的折扣理性消费

原价“1”折扣

230×(1—50%)=115(元)230—50×2=130(元)

六年级数学第二单元下册 第24篇

教学目标

1。理解利率,能利用百分数知识,解决与储蓄有关的实际问题。

2。结合储蓄等活动,学会合理理财,培养分析问题、解决问题的能力。

教学重点难点

理解概念,能利用百分数知识,解决与储蓄有关的实际问题。

教学过程

一、复习引入

1。复习利率有关知识:税收的种类,应纳税额,税率。

2。在日常生活中,我们会积攒一些零用钱,我们积攒的暂时不用的零用钱,会怎么处理呢?学生回答,由学生的回答引出“储蓄”。

3。谁存过钱?怎么存的"?将钱存入银行有什么好处呢?讨论利息的情况。

4。这节课我们就来研究相关储蓄方面的知识,探讨利率有关的知识。

二、新课探究

1。自读教材11页例4上面的部分内容:

学习要求:理清以下问题

(1)存款有哪几种方式?

(2)什么是本金?

(3)什么是利息?

(4)什么是利率?

(5)怎样计算利息?

学生自学教材,学习后汇报。教师结合学生汇报,考查学生对利息的理解,对利息公式的理解。

检测:

(1)结合20xx年10月利率表,说说各种存款方式的年利率是多少?

(2)整存整取一年的年利率是1。50%,表示什么意思?

2。学以致用,教学例4:

(1)出示例4。

(2)读题思考:两年后可以取回多少钱,取回哪些钱?包括几部分?

(3)利息的多少和什么有关系?(引导学生知道是与本金、利率、时间有关)

(4)归纳整理汇报:实际取回的钱数=本金+利息;
利息=本金×利率×时间;

学生独立完成,教师注意巡视学生计算过程,避免丢落项和计算不准确。

三、巩固练习

1。完成教材第11页“做一做”

(1)学生读题,分析题目,比例此题与例4的不同:本金不同,存期不同,利率不同。计算方法相同吗?

(2)学生运用公式独立解答后集体订正。

2。教材第14页“练习二”第9题。

先让学生观察存款凭证,从中能获取哪些信息?本金、利率、时间各是多少?再根据利息的计算方法进行解答。

3。教材第15页“练习二”第12题。

(1)妈妈需要慎重选择吗?怎么办?

(2)第一种方式的时间,利率是多少?第二种呢?

(3)分别计算后比较并做出决定。学生独立解答。讲一讲自己的解题思路。

小结:在实际生活中,我们常常需要这样做出选择,选择时需要用心地算一算,算的过程不要怕麻烦,按照时间和方法一步一步地去想,就能很好地解决问题。

四、课堂小结。

同学们,这节课有什么收获?

学生汇报,引导学生懂得储蓄是利国利民的事情;
在银行存款的方式很多种,如活期、整存争取、零存整取等;
存入银行的钱叫做本金;
取款时银行多支付的钱叫做利息;
利息与本金的比值叫做利率。我们还知道了计算利息的方法是:利息=本金×利率×存期;
计算时遇到步骤比较的计算时,要一步一步认真计算,有耐心,保证计算结果正确。

板书设计

利率

利息=本金×利率×存期(时间)

例4 5000 ×(1+3。75%×2)

=5000×1。075

=5375(元)

答:到期时王奶奶可以取回5375元。

推荐访问:下册 单元 热门 六年级数学第二单元下册热门24篇 六年级数学第二单元下册(热门24篇) 六年级下学期数学第二单元

版权所有:九力公文网 2013-2024 未经授权禁止复制或建立镜像[九力公文网]所有资源完全免费共享

Powered by 九力公文网 © All Rights Reserved.。备案号:苏ICP备13036920号-1