高三总结知识点第1篇一、质点的运动(1)直线运动1)匀变速直线运动1、速度Vt=Vo+at2、位移s=Vot+at/2=V平t=Vt/2t3、有用推论Vt—Vo=2as4、平均速度V平=s/t(定义式下面是小编为大家整理的高三总结知识点10篇,供大家参考。
高三总结知识点 第1篇
一、质点的运动
(1)直线运动
1)匀变速直线运动
1、速度Vt=Vo+at
2、位移s=Vot+at/2=V平t= Vt/2t
3、有用推论Vt—Vo=2as
4、平均速度V平=s/t(定义式)
5、中间时刻速度Vt/2=V平=(Vt+Vo)/2
6、中间位置速度Vs/2=√[(Vo+Vt)/2]
7、加速度a=(Vt—Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;
反向则a<0}
8、实验用推论Δs=aT{Δs为连续相邻相等时间(T)内位移之差}
9、主要物理量及单位:初速度(Vo):m/s;
加速度(a):m/s2;
末速度(Vt):m/s;
时间(t)秒(s);
位移(s):米(m);
路程:米;
速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt—Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点。位移和路程。参考系。时间与时刻;
速度与速率。瞬时速度。
2)自由落体运动
初速度Vo=0 2。末速度Vt=gt 3。下落高度h=gt2/2(从Vo位置向下计算)4。推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9。8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1、位移s=Vot—gt2/2
2、末速度Vt=Vo—gt(g=9。8m/s2≈10m/s2)
3、有用推论Vt2—Vo2=—2gs
4、上升最大高度Hm=Vo2/2g(抛出点算起)
5、往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、力(常见的力、力的合成与分解)
1)常见的力
1、重力G=mg(方向竖直向下,g=9。8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2、胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3、滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4、静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5、万有引力F=Gm1m2/r2(G=6。67×10—11N?m2/kg2,方向在它们的连线上)
6、静电力F=kQ1Q2/r2(k=9。0×109N?m2/C2,方向在它们的连线上)
7、电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8、安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9、洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向);
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1、同一直线上力的合成同向:F=F1+F2,反向:F=F1—F2(F1>F2)
2、互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3、合力大小范围:|F1—F2|≤F≤|F1+F2|
4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
3)动力学(运动和力)
1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3、牛顿第三运动定律:F=—F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4、共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5、超重:FN>G,失重:FN
6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
三、曲线运动、万有引力
1)平抛运动
1、水平方向速度:Vx=Vo
2、竖直方向速度:Vy=gt
3、水平方向位移:x=Vot
4、竖直方向位移:y=gt2/2
5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8、水平方向加速度:ax=0;
竖直方向加速度:ay=g
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;
(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1、线速度V=s/t=2πr/T
2、角速度ω=Φ/t=2π/T=2πf
3、向心加速度a=V2/r=ω2r=(2π/T)2r
4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5、周期与频率:T=1/f
6、角速度与线速度的关系:V=ωr
7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8、主要物理量及单位:弧长(s):(m);
角度(Φ):弧度(rad);
频率(f);
赫(Hz);
周期(T):秒(s);
转速(n);
r/s;
半径(r):米(m);
线速度(V):m/s;
角速度(ω):rad/s;
向心加速度:m/s2。
注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2、万有引力定律:F=Gm1m2/r2(G=6。67×10—11N?m2/kg2,方向在它们的连线上)
3、天体上的重力和重力加速度:GMm/R2=mg;
g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;
ω=(GM/r3)1/2;
T=2π(r3/GM)1/2{M:中心天体质量}
5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7。9km/s;
V2=11。2km/s;
V3=16。7km/s
6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7。9km/s。
四、功和能(功是能量转化的量度)
1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2、重力做功:Wab=mghab {m:物体的质量,g=9。8m/s2≈10m/s2,hab:a与b高度差(hab=ha—hb)}
3、电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4、电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}
5、功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6、汽车牵引力的功率:P=Fv;
P平=Fv平{P:瞬时功率,P平:平均功率}
7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8、电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}
9、焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10、纯电阻电路中I=U/R;
P=UI=U2/R=I2R;
Q=W=UIt=U2t/R=I2Rt
11、动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12、重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14、动能定理(对物体做正功,物体的动能增加):W合=mvt2/2—mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2—mvo2/2)}
15、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=—ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O做正功;
90O<α≤180O做负功;
α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);
(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:1kWh(度)=3。6×106J,1eV=1。60×10—19J;
(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
五、电场
1、两种电荷、电荷守恒定律、元电荷:(e=1。60×10—19C);
带电体电荷量等于元电荷的整数倍
2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9。0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4、真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5、匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6、电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7、电势与电势差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q
8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10、电势能的变化ΔEAB=EB—EA{带电体在电场中从A位置到B位置时电势能的差值}
11、电场力做功与电势能变化ΔEAB=—WAB=—qUAB(电势能的增量等于电场力做功的负值)
12、电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器
14、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
3)常见电场的电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的"电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1。60×10—19J;
(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。
六、恒定电流
1、电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2、欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3、电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4、闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5、电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6、焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7、纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8、电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9、电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3 I并=I1+I2+I3+
电压关系U总=U1+U2+U3+ U总=U1=U2=U3
功率分配P总=P1+P2+P3+ P总=P1+P2+P3+
10、欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11、伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA [或Rx>(RARV)1/2]选用电路条件Rx< 12、滑动变阻器在电路中的限流接法与分压接法 限流接法 电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp>Rx便于调节电压的选择条件Rp 注1)单位换算:1A=103mA=106μA; (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大; (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻; (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大; (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r); (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。 七、磁场 1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2、安培力F=BIL; 3、洛仑兹力f=qVB(注V⊥B); 4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB; 解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 八、电磁感应 1、[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化; (3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。 1.数列的定义、分类与通项公式 (1)数列的定义: ①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类: 分类标准类型满足条件 项数有穷数列项数有限 无穷数列项数无限 项与项间的大小关系递增数列an+1>an其中n∈N_ 递减数列an+1 常数列an+1=an (3)数列的通项公式: 如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式. 3.对数列概念的理解 (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 4.数列的函数特征 数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_). 1、生物体具有共同的物质基础和结构基础。 2、细胞是生物体的结构和功能的基本单位; 3、新陈代谢是生物体进行一切生命活动的基础。 4、生物体具应激性,因而能适应周围环境。 5、生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。 6、生物体都能适应一定的环境,也能影响环境。第一章生命的`基本单位——细胞 7、组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。 8、生物界与非生物界还具有差异性。 9、糖类是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。 10、一切生命活动都离不开蛋白质。 11、核酸是一切生物的遗传物质。 12、组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有这些化合物按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。 13、地球上的生物,除了病毒以外,所有的生物体都是由细胞构成的。 14、细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。 15、细胞壁对植物细胞有支持和保护作用。 16、线粒体是活细胞进行有氧呼吸的主要场所。 17、核糖体是细胞内将氨基酸合成为蛋白质的场所。 18、染色质和染色体是细胞中同一种物质在不同时期的两种形态。 19、细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。 20、构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。 1、函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(—x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2、复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3、函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称; 4、函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5、方程k=f(x)有解k∈D(D为f(x)的值域); 6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; 7、(1)(a>0,a≠1,b>0,n∈R+); (2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a>0,a≠1,N>0); 8、判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且; (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10、对于反函数,应掌握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A); 11、处理二次函数的问题勿忘数形结合:二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12、依据单调性:利用一次函数在区间上的保号性可解决求一类参数的范围问题; 13、恒成立问题的处理方法 (1)分离参数法; (2)转化为一元二次方程的根的分布列不等式(组)求解; 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_). (2)若{an}为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,q∈N_). (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列. (5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列. 第二部分函数与导数 1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性; ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的定义域是内函数的值域。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件; ⑵是奇函数; ⑶是偶函数; ⑷奇函数在原点有定义,则; ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 1、函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性; 2、复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可; (2)复合函数的单调性由“同增异减”判定; 3、函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4、函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5、方程k=f(x)有解k∈D(D为f(x)的值域); 6、a≥f(x)恒成立a≥[f(x)]max,; 7、(1)(a>0a≠1,b>0,n∈R+); (2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a>0,a≠1,N>0); 8、判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且; (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10、对于反函数,应掌握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A); 11、处理二次函数的问题勿忘数形结合 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向; 12、依据单调性 利用一次函数在区间上的保号性可解决求一类参数的范围问题; 13、恒成立问题的处理方法 (1)分离参数法; (2)转化为一元二次方程的根的分布列不等式(组)求解; a(1)=a,a(n)为公差为r的等差数列 通项公式: a(n)=a(n-1)+r=a(n-2)+2r=……=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r 则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r. 通项公式也成立。 因此,由归纳法知,等差数列的通项公式是正确的。 求和公式: S(n)=a(1)+a(2)+……+a(n) =a+(a+r)+……+[a+(n-1)r] =na+r[1+2+……+(n-1)] =na+n(n-1)r/2 同样,可用归纳法证明求和公式。 a(1)=a,a(n)为公比为r(r不等于0)的等比数列 通项公式: a(n)=a(n-1)r=a(n-2)r^2=……=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1). 可用归纳法证明等比数列的通项公式。 求和公式: S(n)=a(1)+a(2)+……+a(n) =a+ar+……+ar^(n-1) =a[1+r+……+r^(n-1)] r不等于1时, S(n)=a[1-r^n]/[1-r] r=1时, S(n)=na. 同样,可用归纳法证明求和公式。 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。力是矢量。 2.重力 (1)重力是由于地球对物体的吸引而产生的。 [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。 3.弹力 (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。 (2)产生条件:①直接接触;②有弹性形变。 (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。 ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。 ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。 (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。 (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。 (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。 ②平衡法:根据二力平衡条件可以判断静摩擦力的方向。 (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。 ①滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。 ②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。 5.物体的受力分析 (1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。 (2)按“性质力”的顺序分析。即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析。 (3)如果有一个力的方向难以确定,可用假设法分析。先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态。 6.力的合成与分解 (1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。(2)力合成与分解的根本方法:平行四边形定则。 (3)力的合成:求几个已知力的合力,叫做力的合成。 共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2。 (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算)。 在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法。 7.共点力的平衡 (1)共点力:作用在物体的同一点,或作用线相交于一点的几个力。 (2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。 (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0。 (4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等。 Card(AB)=card(A)+card(B)-card(AB) (1)命题 原命题若p则q 逆命题若q则p 否命题若p则q 逆否命题若q,则p (2)AB,A是B成立的充分条件 BA,A是B成立的必要条件 AB,A是B成立的`充要条件 1.集合元素具有①确定性;②互异性;③无序性 2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法 (3)集合的运算 ①A∩(B∪C)=(A∩B)∪(A∩C) ②Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB (4)集合的性质 n元集合的字集数:2n 真子集数:2n-1; 非空真子集数:2n-2 高三数学知识点2 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0. 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。 复数相等特别提醒: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)根据复数相等的充要条件解之。 先秦 1、西周的兴衰。 2、分封制的内容、实质。 3、全面理解和说明春秋到战国时期我国社会由奴隶社会瓦解到封建制度确立,__走向统一集权,民族融合局面出现的历史发展趋势在政治、经济、文化上的表现。 4、正确评价春秋战国期间的兼并战争。 5、商鞅变法的背景,内容,作用和实质(是在经济,政治上确立了封建制度。是怎样体现和完成春秋战国以来的历史发展趋势)。 6、战国时封建经济发展的具体成就(铁器、牛耕、水利、手工业和商业)。 7、百家争鸣局面出现的原因,流派,内容,结局。注意儒家,道家和法家。 8、天文、医学和诗经。 9、孔子(重点)、荀子,孟子,韩非和屈原。 说明:先秦时期多年未出大题,一定要注意复习到位,特别是百家争鸣,春秋战国的社会发展趋势。此阶段也可以和秦汉或者明清时期结合起来考察。
1kV=103V=106mA;
1MΩ=103kΩ=106Ω
(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
r=mV/qB;
T=2πm/qB;
(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);高三总结知识点 第2篇
高三总结知识点 第3篇
细胞是一切动植物结构的基本单位。病毒没有细胞结构。高三总结知识点 第4篇
高三总结知识点 第5篇
高三总结知识点 第6篇
高三总结知识点 第7篇
偶函数在对称的单调区间内有相反的单调性;
若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);
研究函数的问题一定要注意定义域优先的原则。
a≤f(x)恒成立a≤[f(x)]min;
二看对称轴与所给区间的相对位置关系;高三总结知识点 第8篇
高三总结知识点 第9篇
高三总结知识点 第10篇