当前位置:九力公文网>专题范文 > 公文范文 > 高考数学总结方法汇编17篇

高考数学总结方法汇编17篇

时间:2023-07-20 18:36:01 公文范文 来源:网友投稿

高考数学总结方法第1篇在进行第一轮复习的同时,我也在进行专项题型的训练(即第二轮复习),这个阶段我一直坚持到了高考。我对自己想读的大学做了深入的了解,已经很清楚在高考中大概要达到一个什么样的分数才能进下面是小编为大家整理的高考数学总结方法汇编17篇,供大家参考。

高考数学总结方法汇编17篇

高考数学总结方法 第1篇

在进行第一轮复习的同时,我也在进行专项题型的训练(即第二轮复习),这个阶段我一直坚持到了高考。

我对自己想读的大学做了深入的了解,已经很清楚在高考中大概要达到一个什么样的分数才能进入这所大学,然后把这些分数分配到各个科目。我发现,数学只要考到130多分就够了,然后我把这130多分再分配到各个题型上去,看哪些题可以舍弃,哪些题不能舍弃,这使我对整张数学试卷的答题策略有了清晰的认识。

首先我分析了近几年本省数学考卷的构成:十道选择题→五道填空题→六道大题。对于前十五道题,我研究了近几年高考卷,发现大部分是基础题,只需要训练速度与准确度,少部分是技巧题,需要比较好的思维和联系课本知识的能力。对这一部分题型,我专门去买了小题集(里面有很多套测试题,每套只有十道选择题和五道填空题)来专项突破。每天测一套,我做练习的目的是提高速度和准确度,目标是在25分钟之内完成并保证100%正确率。刚开始一套测下来要用四十多分钟,还常出错。在基础知识复习的基础上,这部分题就靠多练,练了几十套之后就很有感觉了,上手很顺畅。最后我基本达到了自己的目标,25分钟完成,偶尔错1题。

对于后面的大题,我发现本省高考数学试题安排几年来都是固定的顺序:16三角函数→17数列→18概率/排列组合→19立体几何→20解析几何→21函数与导数(我们高考时概率/排列组合和函数与导数的顺序调换了)。其中,20、21题比较难,21题是压轴题,18、19题尽管不难,但对书写要求比较高,表达不规范常被扣分。16、17题则比较容易。于是我的对策是分而治之:

16、17题偶尔做做练练速度;
18、19题经常做,把过程都写下来,对照标准答案看自己哪一步写得不规范,哪里可以更简洁;
高强度的训练重点放在了20、21题。

一般来说,我完成前面十九道题之后平均还剩50~60分钟的时间。20题的解析几何不仅难,对书写要求也比较高,没有经过训练,就算做出来了,要简洁无破绽地表达出来,只书写一项就要用去二三十分钟,这在争分夺秒的高考中是绝对不能忍受的。于是我加大这方面的训练,搜集了很多解析几何的大题,做了全国各地的高考题、模拟题,最后整个过程写下来基本稳定在20分钟左右。

剩下30~40分钟就是攻克最后的21题,一般我会用7~8分钟做完21题的前两小问。第三小问是整张试卷的压轴题,我会先读题目,思考五六分钟,如果感觉前面的题有种不安全感(多练就会有这种感觉,如果前面正确的话内心是会比较安稳的),同时第三小问没思路我就去检查前面的题;
如果感觉前面比较顺,有安全感,我就会继续做第三小问,有时灵感一来就做出来了,有时挨到交卷也憋不出一个字。但我不会去纠结,不会把试卷翻过来翻过去,一会儿想检查,一会儿又不甘心想做出后面的题,这种慌乱是考试的大忌。无论做什么,我都要求自己拿得起放得下,有时候舍弃了第三小问,检查出了前面十几分的错误,无疑是值得的,就算因为检查(没有检查出错误)没做第三小问,我也不会后悔。因为我的高考目标就是140分,我只求保证会做的题全部做对。正因为21题第三小问比较难,我在平时训练时经常做不出来,所以我将重点放在前两小问,第三小问做不出来就向同学和老师请教,体会那种数学思维的跨越,也不强求自己高考一定能做出。我觉得,要保证完成第三小问,势必要花费大量的时间,而高考最后考量的是总成绩,在时间有限的情况下,我选择放弃,把时间投入到前面题型的巩固或是其他科目的复习上。

高考数学总结方法 第2篇

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1、导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2、关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3、导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

01、导数概念的理解。

02、利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

03、要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。


高考数学总结方法 第3篇

做题之后加强反思,做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:“有钱难买回头看”。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。所以要把自己学到的知识合理地系统地组织起来,要总结反思,这样高中数学水平才能长进。

积累高中数学资料随时整理,要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,数学复习资料才能越读越精,一目了然。

配合老师主动学习,高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知做作业是绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明。因此,高中新生必须提高自己学习数学的主动性。准备向将来的大学生的学习方法过渡。

合理规划步步为营,高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的数学学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

高考数学总结方法 第4篇

当同学们开始专题复习的时候,我只好硬着头皮将基础知识和专题训练同时进行。我对基础知识复习的理解就是全面不遗漏地复习一遍高中的数学知识。于是,我买了一本最新的教参,个人觉得它的编排还是比较合理的,它先按不同的章分开,每章下面又分很多小节。每个小节,前半部分是近几年的高考题,分AB组,A组的题较简单,正好可用来回顾知识点、重温一下解题思路;
B组的题难度稍大,可用来训练解题思路和解题能力。后半部分是模拟题,也分AB组。我先是按照教参的编排顺序复习课本上相应的内容(千万别忽视了课本的复习,只做题是事倍功半的),然后再做参考资料上相应的高考题组、模拟题组,就这样一节一节稳扎稳打地往后做。

这是一个漫长的过程,因为其他科目的复习也要同步跟进,每天的时间又有限。大概用了三个月,我才完整地捋顺了课本,从前到后过完了两遍参考资料。这个时候,感觉自己大脑中已经形成了完整的知识体系,这种感觉棒棒哒。到这时几乎所有的高考题,我都可以看穿它背后考查的内容,虽然很多题自己依旧不能解,但只要看了答案,很快就能发现自己思维的盲点,理解题目本身蕴含的数学意义。

高考数学总结方法 第5篇

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

高考数学总结方法 第6篇

一,第一轮复习的目标

指导思想是全面、扎实、系统、灵活。全面———即全面覆盖;扎实———抓好单元知识的理解、巩固、深化;系统———注意知识的前后联系,有机结合,完整性、系统性,使学生初步建立明晰的知识网络;灵活———增强小综合训练,克服单向性、定向性,初步培养综合运用知识、灵活解题的能力。复习的直接目标是解决高考中的基础题,其根本目的是为数学素质的提高作物质准备。在这一阶段主要抓好对基本概念准确记忆和实质性的理解,抓基本方法、基本技能的熟练应用,抓公式和定理的正用、逆用、变用、巧用,抓基本题型的训练和熟化。

二.第一轮复习中需要注意的几个问题

首先,教师认真研读高考考试标准,明确“考什么,怎么考,考多难”,考试标准上对于高考所要考查的数学思想,数学方法,数学能力,题型比例和题量都有明确的说明,甚至对题目的能力要求,做题目用多少时间都有说明。教师只有熟悉考试标准,复习中才能做到胸有成竹,得心应手。

其次,教师要熟悉和研究近几年新高考试题,掌握高考试题的结构与特征,明确哪些内容在近几年的考题中已经出现,那些还从未涉及过,哪些知识点常考常新,逐一排查找出知识的重点、难点、疑点,做到心中有数,有的放矢。充分利用图像、表格、框图,使学生在头脑中构建知识网络,使之变成清晰的几条线,而不是模糊的一大片。对概念、定义、公式、定理要让学生深刻理解,牢固记忆,融会贯通,熟练提取,力求做到提起一根线带起一大遍。

第三,教师在复习教学中要以提高学生解题能力为核心,注重对数学思想,数学方法,考试常识和艺术的渗透。立足基础,突出通法,揭示知识发生、发展和深化过程,充分展示问题的思维过程,让学生从中领悟基础知识、基本方法的应用,通过变式训练,引导学生归纳解题方法、技巧、规律和思想方法,促进由知识向能力转化,实现自我完善,争取收到做一题得一法,会一类通一片的效果。使整个复习过程成为锤炼学生思维习惯,提高数学素质,培养良好的应试心理素质的过程。

三.第一轮复习的一些具体做法

(1)阅读教材,做好预习准备

学生通过阅读教材,预习完成复习资料上的基础训练题,可以了解每一次课的知识系统,知识结构,问题类型及方法、技能,明确本课的重难点,弄清自己的薄弱环节,使他们能带着问题听课,为听好课作好充分准备(即了解自己对本节哪些知识了解,哪些不了解,哪些方法清楚,哪些不清楚)。

(2)精心讲解,突出解法发现

在第一轮复习的课堂教学中,教师要精心准备,精心选材,把握好复习的关键,明确每次课所要解决的问题,达到什么目标,讲什么,如何讲。尤其在解题教学中要突出解法的发现,即思路是如何打通的,解法是如何发现的。让学生明确对数学问题的分析处理方法,明确解题的各个环节,熟悉各种数学语言(文字语言、符号语言、图形语言)识别与转换,如何选用合理简洁的算理和算法。

(3)精选试题,抓好基础训练

在复习当天知识的基础上,除完成资料上的选填题外,一般布置的作业量控制在2~3个解答题,要求学生独立完成。所选题目充分体现“基础性”,“典型性”,主要是源于课本的变式题,或体现基本概念、基本方法的基本题,同时也精选近几年高考题中涉及相关章节知识点的低中档题。这样,既巩固了当天复习的内容,也使能学生进一步了解高考命题特点,激发兴趣,增强信心。

(4)及时检测,优化思维品质

每复习完一个单元后,及时组织单元小综合检测,代数、立体几何、解析几何复习完成后作单科小综合训练。其目的是进一步巩固和熟练学生所复习过的知识,训练一般由本年级教师自己命题,并控制其难度,着眼于基本内容、基本方法的考查,是一种过关性的训练。此外,教师还指导学生做好以下工作:①默写本章主要概念、定理、公式,阐述其内容、本质;②复述重要定理的证明思路;③回忆本单元的主要题型、解法和技巧,总结出一些具有普遍意义的思路、方法,对同一类问题的解题方法要认真体会,学会“一把钥匙开一把锁”;④建立错题集,整理该单元中自己在各次作业、测试中出现的错误,分析错误的原因、性质及改正的途径,以加强对概念的本质认识和公式的正确应用,分析计算中失误的原因,对症下药,及时改进,以提高解题的速度和准确性。

在复习中常常发现,学生对同一问题总是多次失误,课堂上讲过多次的问题仍然不能解决。究其原因,除了与学生的知识掌握不牢有关之外,还与学生不注重解题后的反思有很大的关系,不少同学往往做一题,丢一题,作对了,算运气好,做错了,自认倒霉。很少有同学做解题后的反思这项工作,而教师积极引导学生做好解题后的反思,让他们在解题实践中,特别是从失败中吸取有益的教训,以形成自己的解题风格,是一个提高解题能力的极好途径。


高考数学总结方法 第7篇

1、回归课本,巩固基础:高考倒计时是回归课本的时候了,不要把课本丢下,着重看课本上的公式、理论、定理,学会变换,把基础打牢了自然能举一反三,灵活运用。

2、避免题海战术:对于一看就会的题型直接pass掉,做精题,精做题。不要什么都做没有选择,没有计划,如果每一题都做不仅会浪费时间而且也提高不了多少。

3、不专注于难题:不会的题不要一个人在那死扣,如果一道题你看了20分钟都没有思路,无从下手,要么请教高手要么放弃,不要专注于难题。尽量做一些看起来会但是不能全面做出来的题,克服会而做不对,对而做不全,这样提升空间比较大。

4、各类题的解题方法:不同的题型有不同的解题方法,要善于归纳和整理。要选择填空题可以选择排除法、带进去验证、直觉、数形结合的方法。简单的题答得时候尽量要全面。压轴题,选择、填空、答题都各自的压轴题,会做就做不会做就暂时放弃,先把会的题做出来后再回过头看。

5、训练考试意境:把每次训练都当做高考,数学的复习离不开做题,但是做题量不能太大,做题的时候更应该模拟高考的时间和场景,下午三点到五点考数学,所以在复习的时候也在这个时间做题,适应高考模式。

6、关于大题:简单的大体要尽量的把步骤写详细,尽量不要遗漏步骤,检查的.时候比较方便。也能让改卷老师无话可说。难一点的大题,在题中你能得到什么信息就写上,做不全的题把自己会的写出来也会有步骤分的。解题过程中发现自己做错了先把正确的步骤写下,然后把错误的划掉。如果第一步做不出来可以用第二步的结论做第一步的题。

高考数学总结方法 第8篇

陆金中表示,以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。

概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。

高考数学复习七大知识点:

第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。

高考数学总结方法 第9篇

刚开始复习时,有种剪不断理还乱的感觉。面对庞大的知识网络,我整天都不知道自己复习了什么,整天都在纠结该做什么,一方面想赶紧把时间投入进去,一方面又不知道该把时间投入到哪儿,非常盲目。渐渐地,我找到了一个可操作的循环周期,每天复习一小节,做一套小题,练两道解析几何,这样就不再纠结每天到底该干什么。我照这个周期进行下去,慢慢调整,坚持到高考。

对于老师布置的作业,我向来不是盲目去做。我不做与自己的复习计划重复的东西,只做对自己有价值的东西。比如老师发的某张试卷,上面关于某个知识点的题是我没见过的类型,而其他题目的题型我都训练过了,那我就只做没见过的那一部分,其他的快速看看就过去,简单来说就是“取其精华去其糟粕”。

高考数学的备考方法相关

高考数学总结方法 第10篇

第一轮复习结束后,我一直都在进行第二轮复习,与此同时我自己又增加了第三轮复习――整张试卷的模拟测验。我去市面上买了很多套试卷(没有纠结买什么,难度、题型和本省高考一样就入手,主要挑仿真度高的模拟题,因为历年各省(区、市)的高考题很多都已经做过了,再拿来自测分数会偏高很多),刚开始我每周做一套,我会选择某个晚自习到一个无人的教室,调好闹钟,模拟高考。随着高考的临近,我用在第二轮题型专项突破的时间减少,加大了整张试卷的训练,最后几周到了两天一套卷(我指的是除了老师每天布置的几套试卷之外自己附加的试卷)的练习频率,并且都严格按照高考的时间,从上午九点开始,到十一点结束。

高考数学总结方法 第11篇

数学第一题一般不会是A!

最后一题不会是A!选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!三个答案是正的时候,在正的中选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!

以上都不实用的时候选B!

在计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。和图形有关的选择填空可以取特值。

大题不会做看上问的结论能不能用,还不会就照条件把你能想到的结论推出来,一般都有分,运气好可以拿1大半

填空题仔细点,2分钟没思路就跳,不会做写个最可能的答案,对的几率也不很小。

数学从易到难注意复查填空题:慎重再慎重在数学的主观题当中,填空题并不像后面的大题,要求给出具体的解题步骤,它只要求考生给出一个最后的答案。这就要求考生在答题时更加慎重,按部就班来进行解题。大题:步骤需明确在大题(计算题和证明题)阅卷过程中,一般是过程分和结论分分开给的。

因此考生在答题时还是应该将步骤写明确,这样不但能够获得步骤分,同时也利于自己后来的检查。否则就跟填空题一样,答案一错就没有分了。

自身:定位需理性近年来,高考当中出现了一些奇怪的现象,就是一些学生平时的表现还不错,但他们的卷面得分就是上不去。这主要是学生自身的定位出现了问题。因为这些考生将过多的时间花在了难题上,这样一来,在容易题上出错的概率就大大增加。其实,难题在考试当中所占的比例仅仅为20%。

因此,考生在答题时不要有“一定要把难题啃下来”的非理性念头。只要老老实实把容易题的分数拿全,那么考试的分数就不会很低。答题:大胆再大胆在不是很有把握的情况下,最好不要将原来的答案涂掉,可以将两种答题方法都写在考卷上。阅卷老师一般会按照得分高的那种方法给分的。

反正我发现数学最后两道选择不是C就是A,适用题型:问题求解题

数量原则

理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个

三不相同原则

即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序

高考数学选择题蒙题方法归纳相关

高考数学总结方法 第12篇

基础:数学的重中之重

所谓基础,是指比较简单、一般学会就能拿分的题目。例如今年四川高考数学题出现了最简单的等差数列求通项,甚至还有关于集合或是虚实数的题目等等。笔者称这类题目为“大杀器”。这类题往往让人心烦意乱:做出来觉得理所应当,要是突然“糟了”便是五雷轰顶,后果不堪设想。

为什么最简单的基础题会成为埋伏在茫茫试卷间的“大杀器”?正是因为“理论上讲”这些题都是照搬知识点,认真学了肯定做得来。于是做不来时会慌张,下来突然想起时会懊恼,恨不得回去做个十遍八遍。这个心理战的最终结局往往是大量的时间被投向基础,正如方法二,合理吗?答案是否定的。

个人认为,牢牢抓住基础题来自于一次次的反复刺激,如果第一次学习时已经认真学过(注意这个前提),那么之所以做题时会做错或是遗忘,可能是因为记忆或者理解并没有变得敏感,或者单纯因为暂时的短路、计算出现错误。这时候再花大把的时间练习基础,效果肯定是有的,但是效率一定是低下的。

发现这个版块突然卡壳,翻开笔记本或错题集,“咦!这块我是有印象的”。那么,大可放松心情,改正一下,加深印象即可。这个时候最重要的不是多做,而是错一次就知道为什么错。如果下一次又遇到,而且连着遇到好多次,“还是要错啊”,那就说明此处有鬼。没关系,每一次“还是不对”的无奈与气愤都是最好的刺激,比平时对着习题说一百遍“我要做对它”都有用。遇到老问题仍然做不对就立即去改正并记住出错的原因(考试中遇到就考完马上看),一般两三次就能解决了。笔者在高三上学期的多次考试中,连续做错三角函数题,非常焦躁,但是在强迫自己保持淡定并且多注意每次出错的原因后,我在做此类题目时自然会非常小心,问题最终圆满解决,并没有花过多时间。当然,如果还是会出错,只能参见方法二了。

针对基础的一切讨论,都是基于在第一遍认真学习过的前提下的,即对知识有印象,有理解,但也许并不牢固、并不敏感的状态。如果看到一个版块的知识或是一个细节,感觉是“哇!还有这种东西存在”(这是笔者在高考前最常出现的想法),那么笔者推荐迅速自学,然后直接参考方法二。

非基础:成为高手的关键

基础部分是高中数学学习的重中之重,但绝不是数学学习的全部。想要成为真正的高手,非基础部分才是关键。

在高中,对于该部分的学习主要以老师教授(即非自学)为主。学习方法也很简单,首先就是“认真听课”。“认真听课”是每个人都知道的学习方法,几乎所有老师、学长、教育界人士都会强调,但在课堂上并不容易真正做到。毕竟,“听”是一件多么令人痛苦的事情,如果老师的讲法不对自己的胃口,走神在所难免。但“认真听课”的真正含义并不是认真“听”,“听课”的真实意义是“思考”。老师在讲,那么心中马上就想:他讲的是什么?和前面讲的内容有什么关系?他之后可能会怎么做?如果都能找到答案,那么内心便会油然生出满满的自信,自然变得专注,不会走神了。这才是真正的认真听课。当然,实在是想走神也是正常的,对这种情况,有一个方法是极好的:死盯着老师的眼睛。这种情况下还能走神的大神真是少之又少,如果你是其中一个,那么你还是自己埋头看书较好。

对于“认真听课”之后的故事,就叫“说起来容易做起来难”。对于较难的问题,听老师讲常造成一种“听得懂做不来”的尴尬局面,这种时候,周围的同学就成为一个宝库了。“听同学讲”可以与“耳濡目染”画上等号,其实就是在身边的同学或者大神们讨论或者指导相关问题时去凑凑热闹。有时候,同学讲的东西看起来可能非常高端大气上档次,简直昏天黑地完全听不懂。但是,千万不要退缩或是丧失自信,大不了就是听天书,总比不听得好。听同学讲的重要性在于,也许他讲的东西你连门都找不到,你只听懂了其中的10%大概是什么意思,那么你也有极佳的收获了。也许在将来你学习得更深入之时,这10%就会成为打破思维瓶颈的关键:“等等,我听到过这个问题的解答”,问题迎刃而解。另外,老师的思维是单一的,但是同学的思维是无穷的,在不同想法的碰撞中,即便是错误的方法、错误的结论,也能拓宽你的眼界与思路。

当达到一种境界,题是会做了,听别人讲也觉得轻松了,此时便是“打江山容易坐江山难”,要想保持这种状态,是最难的。依据个人经验,此时最好的方法就是自己当老师,找一个学生(同学或是好友),给他讲解、答疑。在这个过程中,你的思维会越来越清晰,你所吸收的知识会一点一点真正为己所有。当然,如果自己实在是魅力有限,找不到一个学生,那做自己的老师也是极好的。

至于自学,方法便是三两句话就能讲明,个中复杂却只能自学者自己体会。自学,首先是看书,一字一句地看,看懂了再往下走,若有需要拿支笔来勾画,到了有习题的时候马上做。这个阶段之后,再自己找找相关的题目练练手,熟悉书中看到的知识,形成巩固之势。当达到某种境界,参见上一段的最后一点。


高考数学总结方法 第13篇

集合与简单逻辑

1、易错点遗忘空集致误

错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2、易错点忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

3、易错点四种命题的结构不明致误

错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4、易错点充分必要条件颠倒致误

错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;
如果B=>A成立,则A是B的必要条件,B是A的充分条件;
如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5易错点逻辑联结词理解不准致误

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:

p∨q真<=>p真或q真,

p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,

p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

函数与导数

6、易错点求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;

(2)偶次被开放式非负;

(3)真数大于0;

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

7、易错点带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

8、易错点求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

9、易错点抽象函数中推理不严密致误

错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

10、易错点函数零点定理使用不当致误

错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

11、易错点混淆两类切线致误

错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;
曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。

12、易错点混淆导数与单调性的关系致误

错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。

研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

13、易错点导数与极值关系不清致误

错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。

出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

14、易错点用错基本公式致误

错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;
等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

15、易错点an,Sn关系不清致误

错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:

这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

16、易错点对等差、等比数列的性质理解错误

错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。

一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;
在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N)是等差数列。

解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。

17、易错点数列中的最值错误

错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。

但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。

18、易错点错位相减求和时项数处理不当致误

错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:

(1)原来数列的第一项;

(2)一个等比数列的前(n-1)项的和;

(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。


高考数学总结方法 第14篇

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只有一个平面和已知平面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

解答题分步骤解决可多得分

01、合理安排,保持清醒。

数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

02、通览全卷,摸透题情。

刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

03、解答题规范有序。

一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。

对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。

比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。

有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

高考数学总结方法 第15篇

“粒子之小,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”,处处都闪烁应用数学的光芒,高度抽象的纯粹数学,也有其深刻而动人的美丽,堪称艰深难懂而璀璨美丽的艺术。“公正而论,数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,如同一尊雕塑。”学习数学不仅为了应试解题,更要培养思考问题的逻辑性与严密性,提升思维品质。

学好数学关键在于思考。看似枯燥无味的数学公式,细心品味其内涵与外延,也能触摸到深刻的美丽。数学教材要通读,从最基本的概念出发,一步步推导出美丽的结论,前后勾连,交织成严密知识网络。记忆公式要学会举一反三,注意不同条件下结论的变化,掌握公式的.推广和特例,衍生出解决问题的有效模式。

平时做题时,不要满足于记忆解答,要体会每一步的“动机”,才算完成了思维训练。只记住步骤而不思索动机,不像在看书,倒像在校稿。习题要精做,关键在于赋予每道题应有的思维分量。习题要精选精做,每做一题,要归纳解题的入口和关键步骤,尝试着改变条件和结论,探索一类题的解法。

各类考试有严格的时间、空间限制,要做到快速、准确地解题,必须采取一定解题策略,在“理解题目→拟定方案→执行方案→回顾”四个环节里节约时间,提高准确率,争取拿到所有应得的分数。

高考数学的题型颇有规律可循,平时多进行定时、定量的解题训练,才能突破弱项,提升速度,找到解题的感觉。

高考数学总结方法 第16篇

学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:

1、难度适当。现在复习资料多,题多,复习时应按老师的要求。且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失。因此,练习时应从自已的实际情况出发,循序渐进。应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质

2、题贵在精。在可能的情况下多练习一些是好的,但贵在精。首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”。其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程。第三对重点问题要舍得划费时间,多做一些题。第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一。

3、重视改错。有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意。只有经过不断的改正错误,日积月累,才能提高。

4、注意总结。不仅包括题型、方法、规律的总结,还要掌握一些基本题。如立体几何中有这样一道:AC和平面所成的角是,AC平面内AC和AB的射影AB成角,设∠BAC=,求证:coscos=cos。这个等式为立体几何中某此题的计算带来了方便。

如对函数f(x)=x+的奇偶性、单调性、极值和图象应熟悉,利用它给求某些解析式的最值带来了方便。

高考数学总结方法 第17篇

一、整合知识

一轮复习是对高中数学知识点进行全盘扫描,帮助学生梳理知识点,夯实基础。二轮复习则是根据常考考点以专题形式组织复习,主要目标就是能对整个高中的数学知识和方法系统化、网络化。在复习过程中,要有意识地将各种知识进行串联,对知识进行整合,实现融会贯通。对问题的解决,不能仅停留在使问题获得求解,要从不同的视角去看待问题,解题时要不断追问:怎样想,为什么要这样想?特别是理清怎样做,为什么要这样做?这样就可以将一轮复习的看似孤立的知识点串起来,从而不断完善认知结构。

二、提炼思想

一轮复习是掌握基本方法、基本技能,二轮复习则是在一轮复习基础上提炼数学思想。二轮复习中,要对高中数学中常见的数学思想方法进行梳理,在解题过程和解题结束后,要看看在本题中我用到了哪个或哪些数学思想方法。只有借助于在解题活动中的反思、总结、引申和提炼来深化知识的理解和方法的领悟,在对数学思想、数学方法理解透彻融会贯通时,才能提出新解法、巧解法。高中数学涉及的主要思想方法有“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等等,在复习中应注意体验应用数学思想解题的快乐,从而更好地理解数学,认识数学,最终形成一种数学素养。

三、形成能力

高三数学的复习效果,最终显化的是一种解题的能力,特别是高考中的应考能力。二轮复习中要系统把握高考各题型的特点和规律,掌握解题方法,初步形成应试技巧。要培养良好的解题习惯,强化一些基本技能,如计算、推理、画图、语言表达等,特别是书写的规范性,为高考打好坚实的基础。

推荐访问:汇编 高考数学 方法 高考数学总结方法汇编17篇 高考数学总结方法(汇编17篇) 高考数学总结经验

版权所有:九力公文网 2013-2024 未经授权禁止复制或建立镜像[九力公文网]所有资源完全免费共享

Powered by 九力公文网 © All Rights Reserved.。备案号:苏ICP备13036920号-1